banner_lft banner_rite
sidenav_topAbstract-over.gifArchives-over.gifSubmodels-over.gifProceedings-over.gifSites-over.gifBibliography-over.gifErrata-over.gifnav_mid
 


Bibliography

Last update – November 2005

Submit additions or corrections to R. Barlow. Submissions should conform to the format below and should be limited to papers that are accessible and closely aligned with TNF Workshop  topics and activities. 

Some additional listings:

Topics

Simple H2 Flames

Barlow, R. S., and Carter, C. D., “Raman/Rayleigh/LIF Measurements of Nitric Oxide Formation in Turbulent Hydrogen Jet Flames,” Combust. Flame 97:261-280 (1994).

Barlow, R. S., and Carter, C. D., “Relationships among Nitric Oxide, Temperature, and Mixture Fraction in Hydrogen Jet Flames,” Combust. Flame 104:288-299 (1996).

Barlow, R. S., Smith, N. S. A., Chen, J.-Y., and Bilger, R. W., “Nitric Oxide Formation in Dilute Hydrogen Jet Flames: Isolation of the Effects of Radiation and Turbulence-Chemistry Submodels,” Combust. Flame 117:4-31 (1999).

Forkel, H., and Janicka. J., “Large eddy simulation of a turbulent hydrogen diffusion flame,” Flow Turbulence Combust. 65:163-175 (2000).

Kempf, A., Sadiki, A., and Janicka, J., “Prediction of finite chemistry effects using large-eddy simulation,”Proc. Combust. Inst. 29:1979-1985 (2002).

Kronenburg, A., Bilger, R. W. and Kent, J. H., “Second Order Conditional Moment Closure for Turbulent Jet Diffusion Flames,” Proc. Combust. Inst. 29:1097-1104 (1998).

Landenfeld, T., Sadiki, A., and Janicka J., “A turbulence – chemistry interaction model based on multivariate presumed beta-PDF method for turbulent flames,” Flow Turbulence Combust. 68:111-135 (2002).

Meier, W., Prucker, S., Cao, M.-H., Stricker, W., “Characterization of Turbulent H2/N2/Air Jet Diffusion Flames by Single-Pulse Spontaneous Raman Scattering,” Combust. Sci. Technol. 118:293 (1996)

Meier, W., Vyrodov, A. O., Bergmann, V., Stricker, W., “Simultaneous Raman/LIF Measurements of major Species and NO in Turbulent H2/air Diffusion Flames,” Appl. Phys. B 63:79 (1996)

Neuber, A., Krieger, G., Tacke, M. M., Hassel, E. P., and Janicka, J., “Finite rate chemistry and NO mole fraction in non-premixed turbulent flames,” Combust. Flame 113:198-211 (1998).

Pitsch, H., Chen, M., Peters, N., “Unsteady Flamelet Modeling of Turbulent Hydrogen/Air Diffusion Flames,” Proc. Comb. Inst. 27:1057-1064 (1998).

Schlatter, M., Ferreira, J. C., Flury, M., Gass, J., “Analysis of Turbulence-Chemistry Interaction with Respect to NO Formation in Turbulent, Nonpremixed Hydrogen-Air Flames,” Proc. Combust. Inst. 26:2215-2222 (1996).

Smith, N. S., Chen, J-Y. and Bilger, R. W., “Modelling of Nonpremixed Hydrogen Jet Flames Using a Conditional Moment Method”, Proc. Combust. Inst. 24:263-269 (1993).

Smith, N. S. A., Bilger, R. W., Carter, C. D., Barlow, R. S., and Chen, J.-Y., “A Comparison of CMC and PDF Modelling Predictions with Experimental Nitric Oxide LIF/Raman Measurements in a Turbulent H2 Jet Flame”, Combust. Sci. Technol. 105:357-375 (1995).

Tacke, M.M., Linow, S., Geiss, S., Hassel, E.P., Janicka, J., and Chen, J.-Y., “Experimental and numerical study of a highly diluted turbulent diffusion flame close to blow-out,” Proc. Combust. Inst. 27:1139-1148 (1998).

Top

Simple Jet Flames of with CO and CH4

Barlow, R. S., Fiechtner, G. J., Carter, C. D., and Chen, J.-Y., “Experiments on the Scalar Structure of Turbulent CO/H2/N2 Jet Flames,” Combust. Flame 120:549-569 (2000).

Bergmann, V., Meier, W., Wolff, D., Stricker, W., “Application of Spontaneous Raman and Rayleigh Scattering and 2D LIF for the Characterization of a Turbulent CH4/H2/N2 Jet Diffusion Flame” Appl. Phys. B 66:489 (1998)

Hewson, J. C., and Kerstein, A. R., “Stochastic Simulation of Transport and Chemical Kinetics in Turbulent CO/H2/N2 Flames,” Comb. Theory Modelling 5:669-697 (2001).

Hult, J., Meier, U., Meier, W., Harvey, A., and Kaminski, C.F., „Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30:701-709 (2005).

Kempf, A., Schneider, C., Sadiki, A., and Janicka J., “Large eddy simulation of a highly turbulent methane flame: application to the DLR standard flame,” 2nd International Symposium on Turbulent Shear Flow Phenomena 3:315-320 (2001).

Kim, S.H., Choi, C.H., and Huh, K.Y., “Second-order conditional moment closure modeling of a turbulent CH4/H2/N2 jet diffusion flame,” Proc. Combust. Inst. 30:735-742 (2005).

Meier, W., Barlow, R. S., Chen, Y.-L., Chen, J.-Y., “Raman/Rayleigh/LIF Measurements in a Turbulent CH4/H2/N2 Jet Diffusion Flame: Experimental Techniques and Turbulence-Chemistry-Interaction” Combust. Flame 123:326-343 (2000)

Neuber, A., Krieger, G., Tacke, M., Hassel, E., and Janicka J., “Finite Rate Chemistry and NO Molefraction in Non-Premixed Turbulent Flames,” Combust. Flame 113:198-211 (1998).

Renfro, M. W., Guttenfelder, W. A., King, G. B., and Laurendeau, N. M. “Scalar time-series measurements in turbulentCH4/H2/N2 nonpremixed flames: OH.” Combust. Flame 123:389-401 (2000).

Renfro, M. W., King, G. B., and Laurendeau, N. M. “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH.” Combust. Flame 122:139-150 (2000).

Schneider, Ch., Dreizler, A., Janicka, J., "Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames," Combust. Flame 135:185-190 (2003).

Wang, G.H., Clemens, N.T., and Varghese, P.L., “High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame,” Proc. Combust. Inst. 30:691-699 (2005).

Top

Piloted Flames

Barlow, R. S., and Frank, J. H., “Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames,” Proc. Combust. Inst. 27:1087-1095 (1998).

Barlow, R.S., and Karpetis, A.N.,” Measurements of Scalar Variance, Scalar Dissipation, and Length Scales in Turbulent Piloted Methane/Air Jet Flames,” Flow Turb. Combust.72: 427-448 (2004).

Barlow, R.S., Frank, J.H., Karpetis, A.N., and ChenJ.-Y., “Piloted methane/air jet flames: Transport effects and aspects of scalar structure,” Combust. Flame (in press).

Barlow, R.S., Karpetis, A.N., “Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames,” Proc. Combust. Inst. 30: 673-680 (2005).

Bradley, D., Emerson, D. R., Gaskell, P. H. and Gu, X. J., “Mathematical Modelling of Turbulent Non-premixed Piloted Jet Flames with Local Extinctions,” Proc. Combust. Inst. 29: 2155-2162 (2002).

Cao, R.R., and Pope, S.B., “The Influence of Chemical Mechanisms on PDF Calculations of Non-Premixed Piloted Jet Flames,” (in press).

Coelho, P J and Peters, N, “Unsteady modelling of a piloted methane/air jet flame based on the Eulerian particle flamelet model”, Combust Flame 124:444-465 (2001).

Coelho, P.J., Teerling, O.J. and Roekaerts, D., “Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame,” Combust. Flame, 133:75-91 (2003).

Fairweather, M., Woolley, R.M., and Yunardi, “Analysis of kinetic mechanism performace in Conditional Moment Closure modeling of turbulent, non-premixed methane flames,” Combust. Theory. Modelling (accepted).

Hinz, A., Hassel, E. P., and Janicka, J., “Numerical simulation of turbulent non-equilibrium methane-air jet flames using Monte Carlo PDF method,” 1st International Symp. on Turbulence and Shear Flow Phenomena 333-338 (1999).

Kempf, L.A., Flemming, F., and Janicka, J., “Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame,” Proc. Combust. Inst. 30: 557-565 (2005).

Lindstedt, R.P., Louloudi, S.A. and Vaos, E.M., “Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry,” Proc. Combust. Inst., 28, 149-156 (2000).

Masri, A. R., Dibble, R. W., and Barlow, R. S., “The Structure of Turbulent Nonpremixed Flames Revealed by Raman-Rayleigh-LIF Measurements,” Prog. Energy Combust. Sci. 22: 307-362 (1996).

Merci, B., Dick, E., Vierendeels, J., Roekaerts, D. and Peeters, T.W.J., “Application of a New Cubic Turbulence Model to Piloted and Bluff-Body Diffusion flames,” Combust. Flame 126:1533-1556 (2001).

Nooren, P. A., Wouters, H. A., Peeters, T. W. J., Roekaerts, D., Maas, U., and Schmidt. D., “Monte Carlo PDF modeling of a turbulent natural-gas diffusion flame,” Combust. Theory Modelling 1:79-96 (1997).

Nooren, P. A., Versluis, M., van der Meer, T.H., Barlow, R. S., and Frank, J. H., “Raman-Rayleigh-LIF Measurements of Temperature and Species Concentrations in the Delft Piloted Turbulent Jet Diffusion Flame,” Appl. Phys. B 71:95-111 (2000).

Peeters, T.W.J.,  Stroomer, P.P.J.,  de Vries, J.E. , Roekaerts, D.J.E.M., and Hoogendoorn, C.J., “Comparative experimental and numerical investigation of a piloted turbulent natural-gas diffusion flame,” Proc. Combust. Inst. 25:1241-1248 (1994).

Pitsch, H., Steiner, H., “Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D),” Phys. Fluids 12:2541-2554 (2000).

Pitsch, H, “Improved Pollutant Predictions in Large-Eddy Simulation of Turbulent Nonpremixed Combustion by Considering Scalar Dissipation Fluctuations”, Proc. Combust. Inst. 29: 1971-1978 (2002).

Raman, V., Fox, R.O. and Harvey, A.D., “Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame,” Combust. Flame, 136, 327-350 (2004).

Roomina, M. R. and Bilger, R. W., ”Conditional Moment Closure (CMC) Modelling of a Turbulent Methanol Jet Flame”, Combust. Theory Modelling 3:689-708 (1999).

Roomina, M. R. and Bilger, R. W., ”Conditional Moment Closure (CMC) Predictions of a Turbulent Methane-Air Jet Flame”, Combust. Flame 125:1176-1195 (2001).

Sheikhim M.R.H., Drozda, T.G., Givi, P., Jaberi, F.A., and Pope, S.B., “Large eddy simulation of a turbulent nonpremixed piloted methane jet flame,” Proc. Combust. Inst. 30: 549-556 (2005).

Schneider, Ch., Dreizler, A., Janicka, J., "Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames," Combust. Flame 135:185-190 (2003).

Tang, Q., Xu, J., and Pope, S. B., “PDF calculations of local extinction and NO production in piloted-jet turbulent methane/air flames,” Proc. Combust. Inst. 28:133-139 (2000).

van Veen, E. H., and Roekaerts, D., “On the accuracy of temperature measurements in turbulent jet diffusion flames by coherent Anti-Stokes Raman spectroscopy,” Combust. Sci. Technol. 175:1893-1914 (2003).

Wang, H. and Chen, Y., “PDF modeling of turbulent non-premixed combustion with detailed chemistry,” Chem. Eng. Sci., 59, 3477-3490 (2004)

Xu, J. and Pope, S. B., “PDF calculations of turbulent nonpremixed flames with local extinction,” Combust. Flame 123:281-307 (2000).

Top

Jet Flames in Reduced O2

Dally, B. B., Karpetis, A. N., Barlow, R. S., “Structure of Turbulent Nonpremixed Jet Flames in Hot Dilute Coflow,” Proc. Combust. Inst. 29:1147-1145 (2002)

Kim, S. H., Huh, K. Y., Dally, B, “Conditional Moment Closure Modeling of Turbulent Nonpremixed Combustion in Dilute Hot Coflow,” Proc. Combust. Inst. 30:751-759 (2005).

 (see also the vitiated coflow papers under Lifted Flames)

Top

Bluff-Body Stabilized Flows and Flames

Dally, B. B., Masri, A. R., Barlow, R. S., and Fiechtner, G. J., “Instantaneous and Mean Compositional Structure of Bluff-Body Stabilised Nonpremixed Flames,” Combust. Flame 114/1-2, pp. 119-148 (1998).

Dally, B. B., Masri, A. R., Barlow, R. S., Fiechtner, G. J. “Two-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames,” Combust. Flame 132:272-274 (2003).

Dally, B. B., Fletcher, D. F., and Masri, A. R., “Modelling of Turbulent Flames Stabilised on a Bluff-Body,” Combust. Theory Modelling 2:193-219 (1998)

Guoxiu Li, Bertrand Naud and Dirk Roekaerts, “Numerical investigation of a bluff-body stabilised nonpremixed flame with different Reynolds-stress models”, Flow Turbulence Combust. 70:211-240 (2003).

Kim, S. H., Tao, L. and Huh, K. Y., “Application of the Elliptic Conditional Moment Closure Model to a Two-dimensional Nonpremixed Methanol Bluff-Body Flame,” Combust. Flame 120:75-90 (2000).

Kim, S. H and Huh, K. Y, “Use of the Conditional Moment Closure Model to Predict NO formation in a Turbulent CH4/H2 Flame over a Bluff Body,” Combust. Flame 130:94-111 (2002).

Kim, S. H., Huh, K. Y., and Bilger, R. W., “Second-order conditional moment closure modelling of local extinction and reignition in turbulent nonpremixed hydrocarbon flames” Proc. Combust. Inst. 29:2131-2137 (2002).

Kuan, T.S., and Lindstedt, R.P., “Transported probability density function modeling of a bluff body stabilized turbulent flame,” Proc. Combust. Inst. 30:767-774 (2005).

Merci, B., Dick, E., Vierendeels, J., Roekaerts, D. and Peeters, T.W.J., “Application of a New Cubic Turbulence Model to Piloted and Bluff-Body Diffusion flames,” Combust. Flame 126:1533-1556 (2001).

Muradoglu, M., Liu, K., and Pope, S. B., “PDF modeling of a bluff-body stabilized turbulent flame,” Combust. Flame 132:115-137 (2003).

Raman, V., Pitsch, H., and Fox, R.O., “Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion,” Combust. Flame 143:56-78 (2005).

Raman, V., and Pitsch, H., “Large-eddy simulationof a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure,” Combust. Flame 142: 329-347 (2005).

Sreedhara, S., and Huh, S.Y., “Modeling of turbulent, two-dimensional nonpremixed CH4/H2 flame over a bluffbody using first- and second-order elliptic conditional moment closures,” Combust. Flame 143: 119-134 (2005).

Swaminathan, N. and Dally, B. B. “Cross Stream Dependence of Conditional Averages in Elliptic Region of Flows Behind a Bluff-Body,” Phys. Fluids 10:2424-2426 (1998).

Top

Swirl Flames

Kalt, P. A. M., Masri, A. R., and Barlow, R. S., “Swirling Turbulent Nonpremixed Flames of Methane: Compositional Structure,” Proc. Combust. Inst. 29:1913-1919 (2002).

Keck, O., Meier, W., Stricker, W., Aigner, M., “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174:117-151 (2002).

Masri, A. R., Pope S. B., and Dally B. B., “PDF computations of a strongly swirling nonpremixed flame stabilised on a new burner,” Proc. Combust. Inst. 28:123-131 (2000).

Meier, W., Keck, O., Noll, B., Kunz, O., and Stricker, W., “Investigations in the TECFLAM Swirling Diffusion Flame: Laser Raman Measurements and CFD Calculations,” Appl. Phys. B 71:725-731 (2000).

Repp, S., Sadiki, A., Schneider, C., Hinz, A., Landenfeld, T., and Janicka, J. “Prediction of swirling confined diffusion flame with a Monte Carlo and a presumed-PDF-model,” Int. J. Heat and Mass Transfer 3231:1-15 (2001).

Landenfeld, T., Kremer, A., Hassel, E. P., Janicka, J., Schäfer, T., Kazenwadel, J., Schulz, C., and Wolfrum, J., “Laser-diagnostic and numerical study of strongly swirling natural gas flames,” Proc. Combust. Inst. 27:1023-1029 (1998).

Sadiki, A., Repp, S., Schneider, C., Dreizler, A., and Janicka, J., “Numerical and experimental investigations of confined swirling combusting flows,” Prog. Comp. Fluid Dynamics (2003) in press.

Schneider, C., Repp, S., Sadiki, A., Dreizler, A., and Janicka, J., “The effect of swirling number variation on turbulent transport and mixing processes in swirling recirculating flows: experimental and numerical investigations,” 2nd International Symposium on Turbulent Shear Flow Phenomena 3:363-368 (2001).

Top

Turbulent Opposed Jet Flames

Kempf, A., Forkel, H., Sadiki, A., Janicka, J., and Chen, J.-Y., “Large eddy simulation of a counterflow configuration,” ZAMM 81, Supplement 3:541 (2001).

Eckstein, J., Chen, J.-C., Chou, C.-P., and Janicka, J., “Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte-Carlo-pdf simulation,” Proc. Combust. Inst. 28:133-140 (2000).

Geyer, D., Dreizler, A., Janicka, J., Permana, A.D., and Chen, J.Y., “Finite-rate chemistry effects in turbulent opposed flows: comparison of Raman\Rayleigh measurements and Monte Carlo PDF simulations,” Proc. Combust. Inst. 30:711-718 (2005).

Geyer, D., Kempf, A., Dreizler, A., and Janicka, J., “Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1-D-Raman/Rayleigh experiments,” Proc. Combust. Inst. 30:681-689 (2005).

Kempf, A., Forkel, H., Sadiki, A., Janicka, J., and Chen, J.-Y., “Large eddy simulation of a counterflow configuration with and without combustion,” Proc. Combust. Inst. 28:35-40 (2000).

Top

Lifted Flames

Cabra, R., Chen, J.-Y., Dibble, R.W., Karpetis, A.N., and Barlow, R.S., “Lifted Methane-Air Jet Flames in a Vitiated Coflow,” Combust. Flame, (In press).

Cabra, R., Myhrvold, T., Chen, J.-Y., Dibble, R. W., Karpetis, A. N., and Barlow, R. S., “Simultaneous Laser Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow,” Proc. Combust. Inst. 29:1881-1888 (2002)

Cao, R.R., Pope, S.B., and Masri, A.R., “Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations,” Combust. Flame 142:438-453 (2005).

Joedicke, A., Peters, N., and Mansour, M., “The stabilization mechanism and structure of turbulent hydrocarbon lifted flames,” Proc. Combust. Inst. 30: 901-909 (2005).

Kim, I.S., Mastorakos, E., “Simulations of turbulent lifted jet flames with two-dimensional conditional moment closure,” Proc. Combust. Inst. 30: 911-918 (2005).

Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S., and Takeno, T., “A Numerical Analysis of the Structure of a Turbulent Hydrogen Jet Lifted Flame,” Proc. Combust. Inst. 29: 2009-2015 (2002).

Mizobuchi, Y., Shinjo, J., Ogawa, S., and Takeno, T., “A numerical stud on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame,” Proc. Combust. Inst. 30: 611-619 (2005).

Top

Chemical Mechanisms: Comparison and Validation

Barlow, R. S., Karpetis, A. N., Frank, J. H., and Chen, J.-Y., “Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially-Premixed Methane/Air Flames,” Combust. Flame 127:2102-2118 (2001).

Li, S.C., and Williams, F.A., “Formation of NOx, CH4, and C2 Species in Laminar Methanol Flames,” Proceedings of the Combustion Institute 27:485-493 (1998).

Li, S.C., and Williams, F.A., “NOx Formation in Two-Stage Methane-Air Flames,” Combust. Flame 118:399-414 (1999).

Lindstedt, R. P., and Skevis, G. “Chemistry of Acetylene Flames,” Combust. Sci. Technol. 125:75-137 (1997).

Ravikrishna, R. V., and Laurendeau, N. M., “Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Methane-Air and Ethane-Air Counterflow Diffusion Flames,” Combust. Flame 122:474-482 (2000).

Sick, V., Hildenbrand, F., and Lindstedt, R. P., “Quantitative Laser-Based Measurements and Detailed Chemical Kinetic Modeling of Nitric Oxide Concentrations in Methane-Air Counterflow Diffusion Flames,” Proc. Combust. Inst. 27:1401-1409 (1998).

Sung, C. J., Law, C. K., and Chen, J.-Y., “An Augmented Reduced Mechanism for Methane Oxidation with Comprehensive Global Parametric Validation,” Proc. Combust. Inst. 27:295-304 (1998).

Top

Radiation Measurements and Modeling

Frank, J. H., Barlow, R. S., and Lundquist, C., “Radiation and Nitric Oxide Formation in Turbulent Nonpremixed Jet Flames,” Proc. Combust. Inst. 28:447-454 (2000).

Zhu, X. L., Gore, J. P., Karpetis, A. N., and Barlow, R. S., “The Effects of Self-Absorption of Radiation on an Opposed Flow Partially Premixed Flame,” Combust. Flame 129:342-345 (2002).

Coelho, P.J., Teerling, O.J. and Roekaerts, D., “Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame,” Combust. Flame, 133:75-91 (2003).

Top

Mixing Models

Subramaniam, S., and Pope, S.B., “A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees,” Combust. Flame 115:487-514 (1998).

Subramaniam, S., and Pope, S.B., “Comparison of mixing model performance for nonpremixed turbulent reactive flow,” Combust. Flame 117:732-754 (1999).

Top

Scalar Dissipation Measurements and Models

Brockhinke, A., Haufe, S., and Kohse-Höinghaus, K, “Structural Properties of Lifted Hydrogen Jet Flames Measured by Laser Spectroscopic Techniques,” Combust. Flame 121:367-377 (2000).

Chen, Y.-C., and Mansour M. S., “Measurements of the Detailed Flame Structure in Turbulent H2-Ar Jet Diffusion Flames with Line-Raman/Rayleigh/LIPF-OH Technique,” Proc.Combust. Inst. 26:97-103 (1996).

Chen, Y.-C., and Mansour, M. S., “Measurements of Scalar Dissipation in Turbulent Hydrogen Diffusion Flames and Some Implications of Combustion Modeling,” Comb. Sci. and Tech. 126:291-313 (1997).

Frank, J. H., Kaiser, S. A., and Long, M. B., “Reaction-Rate, Mixture Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29:2687-2694 (2002).

Karpetis,A.N., and Barlow, R.S., “Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames,” Proc. Combust. Inst. 30:665-672 (2005).

Karpetis, A. N. and Barlow R. S., “Measurements of Scalar Dissipation in a Turbulent Piloted Methane/Air Jet Flame,” Proc. Combust. Inst. 29:1921-1927 (2002).

Kronenburg, A., Bilger, R. W., and Kent, J. H., “Computation of Conditional Average Scalar Dissipation in Turbulent Jet Diffusion Flames,” Flow, Turbulence and Combustion 64:145-159 (2000).

Nandula, S. P., Brown, T. M., and Pitz, R. W., “Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames,” Combust. Flame 99:775-783 (1994).

Pitsch, H., Steiner, H., “Scalar Mixing and Dissipation Rate in Large-Eddy Simulations of Non-Premixed Turbulent Combustion,” Proc. Comb. Inst., 28:41-49 (2000).

Pitsch, H., Fedotov, S., “Investigation of Scalar Dissipation Rate Fluctuations in Non-Premixed Turbulent Combustion Using a Stochastic Approach,” Comb. Theory Modeling, 5:41-57, 2001.

Stårner, S. H., Bilger, R. W., Long, M. B., Frank, J. H. and Marran, D. H., “Scalar Dissipation Measurements in Turbulent Jet Diffusion Flames of Air-Diluted Methane and Hydrogen,” Combust. Sci. Tech. 129:141-163 (1997).

Top

Differential Diffusion Measurements and Models

Barlow, R.S., Frank, J.H., Karpetis, A.N., and Chen, J.-Y., “Piloted methane/air jet flames: Transport effects and aspects of scalar structure,” Combust. Flame (in press).

Kronenburg, A. and Bilger, R. W., “Modelling differential diffusion in nonpremixed reacting turbulent flow: model development,” Combust. Sci. Technol. 166:195-227 (2001).

Kronenburg, A. and Bilger, R. W., “Modelling differential diffusion in nonpremixed reacting turbulent flow: application to turbulent jet flames,” Combust. Sci. Technol. 166:175-194 (2001).

Pitsch, H., “Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion Flames,” Comb. Flame, 123:358-374 (2000).

Smith, L. L., Dibble, R. W., Talbot, L., Barlow, R. S., and Carter, C. D., “Laser Raman Scattering Measurements of Differential Molecular Diffusion in Turbulent Nonpremixed Jet Flames of H2/CO2 Fuel,” Combust. Flame 100:153-160 (1995).

Top

Other Papers on Modeling

Graham, M.G., “A priori investigation of the constructed PDF model,” Proc. Combust. Inst. 30:785-792 (2005).

Hewson, J. C., Kerstein, A. R., and Echekki, T., “One-dimensional Stochastic Simulation of Advection-Diffusion-Reaction Coupling in Turbulent Combustion,” in IUTAM Symposium on Turbulent Mixing and Combustion, ed. by A. Pollard, Kluwer Academic Publishers, pp. 113-124, 2002.Klimenko, A. Yu. and Bilger, R. W., “Conditional Moment Closure for Turbulent Combustion”, Prog. Energy Combust. Sci. 25:595-687 (1999).

Kroneburg, A., and Papoutsakis, A.E., “Conditional moment closure modeling of extinction and re-ignition in turbulent non-premixed flames,” Proc. Combust. Inst. 30:759-766 (2005).

Lindstedt, R.P., and Louloudi, S.A., “Joint-scalar transported PDF modeling of soot formation and oxidation,” Proc. Combust. Inst. 30:775-783 (2005).

Oefelein, J.C., Schefer, R.W., and Barlow, R.S., “Toward Validation of LES for Turbulent Combustion,” submitted to AIAA Journal Special Issue on Combustion Modeling and LES: Development and Validation Needs for Gas Turbine Combustors, (accepted).

Pitsch, H., Cha, C. M., Fedotov, S., “Flamelet modeling of non-premixed turbulent combustion with local extinction and re-ignition,” Comb. Theory Modelling, submitted, (2002).

Pope, S. B., “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11:119-192( 1985).

Swaminathan, N. and Bilger, R. W., "Assessment of Combustion Sub-models for Turbulent Nonpremixed Hydrocarbon Flames", Combust. Flame 116:519-545 (1999).

Top

Other Papers on Experimental Methods

Frank, J.H., Kaiser, S.A., and Long, M.B., “Reaction-Rate, Mixture Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29:2687-2694 (2002).

Hassel, E. P., and Linow, S., “Laser Diagnostics for Studies of Turbulent Combustion,” Meas. Sci. Technol. 11:R37-R57 (2000).

Karpetis, A.N., Settersten, T.B., Schefer, R.W., and Barlow, R.S., “Laser Imaging System for Determination of Three-Dimensional Scalar Gradients in Turbulent Flames,” Optics Let. 29:355-357 (2004).

Mansour, M. S., and Bilger, R. W., “Spatial-Averaging Effects in Raman/Rayleigh Measurements in a Turbulent Flame,” Combust. Flame 82:411-425 (1990).

Prucker, S., Meier, W., Stricker, W., “A Flat Flame Burner as calibration Source for Combustion Research: Temperatures and Species Concentrations of Premixed H2/Air Flames,” Rev. Sci. Instrum. 65:2908 (1994).

Weigand, P., Lückerath, R., Meier, W., “Documentation of Flat Premixed Laminar CH4/Air Standard Flames: Temperatures and Species Concentrations,” www.dlr.de/VT/Datenarchiv.

Top

 
nav_btm    
footer snl/ca, snl, crf, security and privacy navigation
snl/ca link snl corporate link CRF link privacy and security link Sandia National Laboratories Combustion Research Facility (CRF) privacy and security