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Dephasing Noise

A single qubit under a semiclassical dephasing
model

H = %a(t)a,, + %n(t)a,

With this single qubit as a resource, what can we
learn about the statistics of the noise, n(t)?

C(t) = (n(t)n(0))

Short-time correlations Long-time correlations
Dynamical Decoupling Free Induction Decays
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Short-time Correlations I:
Filter Functions

Only control is pi-pulse train,
1 y(t) = (-1 o
Hr = Ey(t)??(t)ﬂ’z

_ 1 after even number of m-pulses,
| =1 after odd number of w-pulses.

The coherence decays as,
(o4 (0)) = (Tr (453 1r0 5y ¢4 Hrtobin )|

~ exp (- fo ' C'(t)}'(t)dt) 7 (0)

Where, (C(t) = {n(¢)n(0)) is the Correlation Function

27—t
and F(t) = / ! du y(u;— t) y(u ; t) is the Filter Function
t

Kevin Young - Using Pulse Sequences to Characterize and Robustly Mitigate Qubit Noise



Short-time Correlations II:
Filter Function Examples

Carr-Purcell (3)

Free Induction Decay Hahn Echo Uhrig DD (3)
F(t)
{ t t

Filter functions calculated for 7 = (.78
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Short-time Correlations llI:
Inversion of Dynamical Decoupling Eqgn.

Dynamical decoupling theory says,

(o (6)) = exp (— | O(t)f(t)dt)a+ (0)

For a given pulse sequences, we can measure the integral,

Xi = /0 C(t)Fi(t)dt

Repeating for a large number of pulse sequences, we can use the
theory of underdetermined least squares

=Y uFGFHE)  Fy= [ AOFRO
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Short-time Correlations |V:
Choosing Pulse Seqguences

We hope to find a set of filter functions that well spans the space.
Corresponds to maximizing the quality function over the time range of interest.

o0
_ : + .
Q) =Y f Fi()FEF(s) ds
ij /0
Must be careful that qubit does not decohere too much.
T
(@O =exp (- [ COFWE)o2(0
A good choice is the Uhrig DD sequences run for different &\ and 7 .
Free induction decay Uhrig’s dynamical decoupling

t~T5 t ~ 15
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Short-time Correlations II:
Example Reconstruction
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Reconstruction of sample
correlation function using 10 FID
and 50 UDD3 sequences.
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Long-time Correlations:
Free Induction Decays

In order to learn about high-frequency (short-time) noise, we echoed away the effects
of low frequency noise using dynamical decoupling.

To learn about low-frequency (long-time) noise, we cannot use decoupling pulse
sequences.

Instead, repeat the following experiments,
1) Prepare an x-eigenstate
2) Allow to evolve
3) Measure in basis of Ty

This will yield a set of results, +/- 1, and measurement times, the correlation function
of the results is related to the correlation function of the noise:

T

1 1 1 &
M(kA)(0)) = — (o) = 5+ > TiTirk
j=1
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Comment:
Noise Power Spectral Density

Our procedure fits naturally with the correlation function picture

C(t) = {n(t)n(0))

Noise statistics are usually thought of in terms of the power spectral density

Sw) = f_ : C(t)e™*“dt

However, our procedure generates irregular sampling of the correlation
function with unequal error bars

Q(t) L— I I i 5 . B {

Use short time correlations to calculate the high-frequency components of
the PSD, long-time correlations to calculate the low-frequency components.
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Mitigating Effects of Noise
Through Pulses Sequences

How can we best eliminate the effects of dephasing noise?

How can we perform high-fidelity gates in the presence of noise?

How do we simulate evolution under arbitrary noise?
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Optimal Control

Allow more complicated controls, @ (t), @, (%)
1
H(t) = 9 (az(t)oz + ay(t)oy + n(t)o.)

Use gradient ascent pulse engineering (GRAPE)! methods to find control fields
that maximize the fidelity,

= max min It (o(t
f = max min Tr (p(t)pr)

To simulate the evolution of a quantum system under noise, use
a multistate Markovian fluctator

”®) € (.- 1) PO _ e

IN. Khaneja, et al., J. Mag. Res., 172 2, (2005)
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Simulating Noisy Evolution I:
Deterministic Master Equation

Unitary Evolution Noise Switching
@ >@
@ >@
@ >@
p(t) = =ik [Ho + Hye, pi(t)] = My pi(2) pr(t) = Z Tk05(t)

Time-evolution of conditional density matrix
pr(t) — My pi(t) + D Tkj ps(t)
Time-evolution of full den“;ity matrix
1
p(t): N(I @1.-.@1).exp((®Mk+1®ll) t) .(1@1...@1)T.p[]
k

P. Koupanportti, et al., Phys. Rev. A 77, 032334 (2008)

Kevin Young - Using Pulse Sequences to Characterize and Robustly Mitigate Qubit Noise



Simulating Noisy Evolution Il
Multistate Markovian Fluctuators

By choosing the transition rate matrix, [, and the noise states, {n} match the
fluctuator’s noise spectrum to a that of a wide range of Markovian noise sources.
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Simulating Noisy Evolution IlI:
Multistate Markovian Fluctuators
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Single Qubit Gates:
ldentity Gate
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Robust to zero frequency noise

Compares well against similar
Carr-Purcell sequence
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Single Qubit Gates:
Hadamard Gate
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Robust to zero frequency noise

Still to do: Compare to DCGs
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Two Qubits I
Model

J-coupled qubits, correlated noise, independent x, y control on both qubits.

1 B} 1
H(t) =3 (ﬁ'(t) -3 4 b(t) -&‘(2)) + 30() (aﬁ,” + a}?) + (I + 6J(8) 60 . 3@

Noise is assumed to be approximately 1/f

J ~4
8J/J ~1074
n o~ 1074
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Two Qubits Il
ldentity Gate
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Two Qubits II:
VSWAP
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