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Single impurity devices in Si

» Top-down vs. Bottom-up

 Unintentional doping vs.
controlled dopant implantation

Rogge group, Nature Physics 4,
656 (2008)

Dzurak group, Nano Lett. 10(1),11

Sanquer group, _
Nature Nanotechnology 5, 133 (2010) (2010 @ ﬁgﬁ'ﬁa.
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= 2e atomic system in silicon matrix (hydrogenic ion)
» pure atomic states (different from QD states)
= |lab for studying momentum space contributions to

Why D- is important?

few electron atomic physics
= known valley-orbit splitting

= Spin dependent tunneling for spin measurement
= Spin dependent relaxation (Lifetime enhanced

transport)
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Experiment: Transport spectroscopy in donor-interface well
Theory: Atomistic tight binding + SCF Hartree Fock (over 1M atoms)
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Previously known facts about D-: Results from this work:
e Bulk measurements show only 1. Quantum confinement affects charging
1 bound singlet. energy
2. Excited bound D- states observed
e P donor D- at -1.7 meV, As D- including triplets at large E-fields
at -2 meV (bulk case). 3. Valley dependence of exchange

4. Lifetime Enhanced Transport

Lansbergen, Rahman, Verduijn, Klimeck, Hollenberg, Rogge, o
arXiv 1008.1381 (2010) @ National
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= Bulk P charging energy (CE) from SCF TB: 42.4 meV
= Known value from optical measurements: 43.9 meV

» CE depends on wf localization between interface well and donor well

= Other factors: Corner confinement, dielectric mismatch
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D- charging energy (TB vs experiment)
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» Donor depths and fields known for 6 devices (previous work on DO excited
state spectroscopy)

» CE calculated for the same devices and compared to measurements

= Agreement within 5 meV, expected trends

= Sources of error: 1.5 meV accuracy, dielectric screening

Lansbergen, Rahman, Klimeck, Hollenberg, Rogge, Nature Physics 4, 656 (2008)
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Bound excited states of D-
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Bound excited D- states observed for the first time.

Excited manifold has triplet states also.
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Theoretical prediction of D- excited states
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Electronic configurations across orthogonal valley
states result in small exchange splitting
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Lifetime enhanced transport in D-
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¢ in the slow unloading direction only the ground state should be visible {(asym. 1/2600)}
e one of the states (steep step) in the excited manifold does not relax

e stronger coupling of this states leads to current step

e stronger coupling without LET can not lead to this step
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« Quantitative description of the D- charging energy for 6
device samples

 Observation of bound D- excited states for the first time

e Qualitative agreement of excited state energies and spin
symmetries

« Vanishing exchange splitting in the orthogonal valley
states

e Observation of lifetime enhanced transport through D-
excited states
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