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Coherent Tunneling Adiabatic Passage (CTAP)

• Pathways in Eigen-space 
connecting end states
• Adiabatic modulation of 
tunnel barriers
• Minimal middle donor 
occupation

Objective:
•Investigate CTAP in realistic setting 
from atomistic Tight-binding (TB) in 
NEMO-3D. 

•Include Si full band-structure, TCAD 
gates, interfaces, excited states, gate 
cross-talk.

Atomistic simulations of CTAP (ideal donor placement) CTAP in an imperfect donor chain 
(donor straggle & gate voltage fluctuations) 

• Effect of center donor misalignment on the adiabatic path
• Direct TB simulations. 
• 1st excited symmetry
• Center donor density as a measure of the efficacy of CTAP 
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• Robustness 
• Many donors, 4 gates
• Counter-intuitive pulsing

Greentree et al, PRB 70, 235317 (2004).
Hollenberg et al, PRB 74, 045311 (2006). 

About 3 million atoms (15 nm donor separation):  61 x 31 
x 31nm3 domain

cross talk.
•Find voltage sequence for the 
adiabatic path: 3 donor device.

Quantum optics approx.

Approach:
•TCAD gates coupled with a 3 donor TB Hamiltonian:  
molecular states in the solid state
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Longhi et al 2007 
(CTAP in triple waveguides)

Schroer et al PRB 2007:
GaAs triple dots – test bed for  CTAP

- analogue of STIRAP molecular states in the solid state.
•Simulate 3-4 M atoms for a realistic device.
•Compute time of 4-5 hours on 40 procs for each voltage point.
•Fine tune gate voltages to explore the CTAP Regime.
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Displacements along the chain have the most 
detrimental effect, but gate voltages can be fine 
tuned to restore adiabatic path.
Sensitivity of the adiabatic path to Gate Bias

Effective 3 site CTAP Hamiltonian
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Extended effective 3x3 model based on TB wavefunctions
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CTAP pulsing scheme

• Goal: Develop a small scale (3x3) model that encapsulates 
the atomistic TB information.

• Advantages: Optimal voltages can be obtained analytically 
from this parameterized model. Possible to simulate many 
configurations very fast to guide experiments.

• Approach: Use single donor TB wfs as basis for 3x3 model.
- Treat gate biases as perturbations & project full Hamiltonian 

on the single donor basis.
- Parameterize the matrix elements to characterize gate control. 
- Find (VS1, VB1, VB2, VS2) that recovers original Hamiltonian

Middle 
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Right 
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center donor 3x3 matrix elements with gate bias.
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Anti-crossing gap  
=> tunneling times

Rahman, Muller et al, PRB 80, 035302 (2009).

Vanishing central density: signature of adiabatic transfer 
Greentree et al, PRB 70, 235317 (2004).
Rahman et al, arXiv, 1008.1494 (2010). Rahman, Muller et al, arXiv,1008.1494 (2010).

Verification of the model:
Ideal wf symmetry obtained 
using solutions of voltages from 
the parameterized 3x3 model.
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