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6 Degenerate Valleys (gv = 6)
Si (111)

ml=0.67 m0

mt=0.19 m0

m* = (mt ml)1/2 = 0.358 m0

Low T rH below lower bound
• Known Hall corrections should 

increase rH, not decrease it.

Introduction

Valley Effects

Valley Splitting
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For more 
information…

The 111 surface of silicon is predicted to retain the sixfold
valley degeneracy of the ideal bulk crystal. We have developed 
a method for fabricating field effect transistors using vacuum 
as a dielectric in order to study electron transport on the bare 
H-terminated surface, free from the complications created by 
intrinsic disorder at Si-SiO2 interfaces. The resulting devices 
display very high mobilities (up to 110,000 cm2/Vs at 70 mK, 
more than twice as large as the best silicon MOSFETs), enabling 
us to probe valley-dependent transport dynamics to a much 
greater degree than previously possible.

For B = 0 ρxx & ρxy are both suppressed due to parallel transport in anisotropic valleys.
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• Friction between valley currents 

• long-range interaction

• conserves 2DES momentum 

• NOT inter-valley scattering

• short-range interaction

• lattice-mediated

Low field Shubnikov-de Hass 
(SdH) oscillations reveal a 
clearly six-fold degenerate 
system with emerging 
anisotropic behavior.

We can use  this  correction to probe interactions between valleys.
 Phys. Rev. B 80, 161310(R) (2009)
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H-Si(111) Vacuum FET

Valley Drag

gate  

2DES at a H-passivated Si surface

Vacuum cavity

source drain

Si

Si (340 nm)
SiO2 (400 nm)

The H-Si(111) FET is made from  two separate Si substrates, each with a distinct function:  

1. H-Si (111) substrate:
16mm x 7mm, p-type, FZ 
(ρ ~10 kΩ cm, <0.2o miscut)
P implanted contacts 

2. SOI (“remote gate”):
7mm x 10mm
B implanted gate & shield

The two substrates are cleaned and bonded together in vacuum via van der Waals 
forces. The bonding protects the H-Si(111) surface inside a vacuum cavity and 
allows gate to induce a 2DES on the H-Si(111) surface within the cavity region.
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At large B fields, the valley degeneracy lifts completely, revealing minima spaced by ∆ν=1; this 
behavior occurs in all devices measured.
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7 Kv∆ ≈

FE

npvt75 T = 0.3 K µ ~ 24,000 cm2/Vs
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0.1 Kv∆ ≤

FE

npvt131 T = 90 mK µ ~ 110,000 cm2/Vs
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Measuring Degeneracy

Model

We can divide valley splitting into two rough groups: Intrinsic and B-dependent. To measure 
the former, we use low B SdH oscillations.

As the simplest valley-valley interaction, we allow the current in each valley to 
“tug” the currents in the other valleys, similar to Coulomb drag.
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•Vacuum bonding creates very high quality devices  & uncovers new physics.

•Sixfold degeneracy indeed preserved in {111} planes

•The large valley state space affects transport in many ways

•Zero-field Hall suppression provides a powerful new means to probe valley-

valley interaction.

The temperature dependence of the 
SdH oscillations gives the  level 
broadening Γ, an upper bound on the 
intrinsic splitting.
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Summary

T/TF scaling accounts for most 
but not all of T dependence.

Other devices display a strong zero field 
valley splitting.   The two-fold states tend 
to dominate the SdH signal, even though 
all six valleys are occupied.
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