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Introduction Current Comparator

Local probing of a solid-state qubit can be achieved Sensitivity T=4.2K Second generation circuits are being fabricated which will allow
via electrostatic charge sensing. Combining sensitivity o ot the low noise readout to be done at high frequency, above the
with fast readout with such electrometers is quite The current sensitivity of the el 1/f noise which will lead to enhanced sensitivity. Schematic

comparator is determined by the diagrams of the circuits are shown below:
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(a) Schematic diagram of a DQD acting as a qubit and a QPC 3,0] Rising Edge T=4.2K 3.0 P e
capacitively coupled as a charge sensor'. (b) Readout of the The speed of the comparator was 5 T=42K ’ 25 . .., ©
qubit is accomplished by measuring the change in the measured to be: . | ATi=80ns - :
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sensors have presently ranged from 10pA — 350pA*>. wiring of the setup. 05 P P 05 Noise characterization of individual FETs from CMOS7 are
We investigate whether CMOS circuitry residing at 00 00 underway. In order to optimize the bandwidth of the circuits
cryogenic temperature will provide a simple, fast and ’ 50 % ime g 2 ’ an optimum operating frequency must be determined in
sensitive measurement scheme. which to give the lowest integrated noise.
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The 1 generation readout scheme is based on a We investigated a current amplifier on the Cascode current mirror (3 stages gain ~ 125) L1E18y oo
current comparator which takes advantage of the same ASIC in hopes to increase the signal vad N o]
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Setting the reference current in the comparator between the Input Current (nA)
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