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DQD Effective One-Qubit Model
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Different magnetic fields at each dot produce
a rotation about the logical z-axis
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Dynamical-Decoupling Sequences
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where U; represent = and /2

rotations and free evolutions.
This Is an approximation to f1 because

e {U;} and N are finite

e Non-unitary evolution is corrected with
unitary “time-reversal” operations

Dynamical-Decoupling Pulses

To remove 1st- and 2nd-order errors in w and
w/2 z-axis rotations whenI'=T1", = 7 = 0:

m =/Ofsin[¢9(t)]dt, nngoi:os[é’(t)]dt,
773:/1;58111[9( )|dt, mz/oftcos[é’(t)]dt,
15 = / / sm[@ tl (tg)]sign(tl — tg)dtldig,

S. Pasini, et al., Phys. Rev. A, 80 (2009)

Feasible controls
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Control field, Cz(t)

Resulting Fidelities:
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Optimal Dynamical-Decoupling Pulses

By searching the space of controls satisfying

1. 1= 0
2. F=1|Tr |U(tr)Zl]| =1

we improve control fidelities and
system robustness for Z. ,» and Z.

Systematic searching = Optimal control theory

Optimal Control Theory for
Quantum-Mechanical Objectives

Define an objective: [é(t)} — % |Tr {U(tf)zﬂ |

*Incorporate constraints:
e Schrodinger’s equation
« Experimental limitations of the control field

J’ =J+S[U(t)]—a/0tf t)|2dt

Perform variational analysis and optimize iteratively
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 Evolutionary algorithms

 Gradient-based methods

Level Sets and Tangent Spaces
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After calculating —— , all gradient
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directions {m are removed:
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Fidelity Response to Control Noise: Z7/2

Optimal Dynamical-Decoupling Results: Z;

DD+OC yields improved robustness

around an neighborhood of e.
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Control field, Cz(t)

C'(t) — C(t) 4+ oC(t), where 6C' € U,
0C'(t)] = aC(t),and 0 < a < 0.2

Fidelity
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= 10% control noise

Fidelity variation dominated by e
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Fidelity variation dominated by ¢; 0C'is significant for small e.

Control with Experimental Constraints

Fidelity

Resolution at g-dot:

Max. voltage = ~3mV E
«Step size = ~3uV ;N |
*Step time = ~1 ns £
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Current Work and Future Directions

*Incorporate these optimal 7~ and #/2-pulses for memory

and information processing.
*Investigate various noise models (e.g., spin baths).

*Determine how these pulses extend spin-echoes.
*Consider ¢ as time-dependent during the application of the
control field.
*Extend this formalism to arbitrary rotation axes.
°Analyze the control landscape within the region of feaS|b|I|ty,

e.,n=~0.

LABORATORY DIRECTED RESEARCH & DEVELOPMENT
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