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Materials work has been an integral part 
of Sandia’s evolving mission for 5 decades.



Materials capabilities are driven by Sandia’s 
weapon-systems responsibilities.

The design, engineering, testing, system integration, production interface and 
surveillance for non-nuclear components

B83 Strategic Bomb
Total parts - 6,519

• Sandia developed - 3,922
• Sandia specified - 2,378

• Radars
• Impact fuzes
• Shock absorbers
• Casing
• Detonators
• Firing sets
• Transverters
• Capacitors
• Switches
• Switch tubes
• Rectifiers
• Programmers
• Neutron generators
• Reservoirs
• Stronglinks
• Batteries
• Timers
• Spin generators
• Parachutes
• Ejector systems
• PAL controllers

W88/MK5



Scientifically Engineered 
Materials

Materials Aging & Reliability

Materials 
Processing

Our materials R&D is focused on three 
themes that correspond to NW needs.
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Age-related defects are traceable to 
time-dependent change of materials.

W80 Desiccant Life

Interface Debonding

Solder Joint Fracture

Stress Voiding 

W76 O-ring 
Compression Set 

Ceramic Capacitor Failure

Bridgewire Corrosion

Examples include . . .



can lead to:

With extended stockpile life, a “U” shaped failure 
function will apply to many weapon components.

Prediction of the “useful life” of components / subsystems  
depends on a detailed understanding of materials aging.
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A “risk approach” identifies materials aging 
issues that have the highest impact on reliability.

electric contact 
degradation 

“M”

“H”

“L”

corrosion of 
glass

yielding, creep of 
structural 
components

fracture or creep 
of structural 
components

SCC of bolts, lugs
in handling gear

corrosion of Al 
covers/ housings 

degradation of o-rings & 
electrical insulation

corrosion in 
electronics

increase in friction 
coefficient

interface & adhesive 
fracture/delamination

instability of 
energetic materials

oxidation, etc. of 
coatings, paints, 
etc.

fracture/SCC of 
screws & 
connectors

fracture/SCC of 
ceramics and 
glasses

diffusive 
degradation of 
electronic joints

stress voiding

yielding of 
springs/actuatorsC
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fracture of 
pressure vessels

TMF of solder joints

changes in internal
weapon atmosphere

cracking of organic 
composite housings

electrical failure of 
solid encapsulants

= Observed materials failures in WR Product



Materials aging phenomena are driven by changes 
in chemistry and microstructure.
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Engineered materials are metastable and their 
properties can change as a function of time. 

Time-related change due to:
diffusion

– compositional change
– oxidation
– impurity segregation
– grain growth
– 2nd phase morphology
– . . . . .

fatigue
– dislocation density
– surface flaws
– µstructure coarsening
– . . . . .

corrosion
– compositional change
– dimensional change
– segregation
– . . . . .

wear
.  .  .  .  .  .  .
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The influence of distribution can have a 
significant impact on our view of “lifetime.”
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Applied “loads” and materials properties 
each have a distribution of values.

“Reliability” (defined as the “probability of success/survival”)
can be calculated.*

* Oleg Vinogradov, Introduction to Mechanical Reliability: A Designer’s Approach, 
Hemisphere Publ.,  New York, 1991

tolerance
geometry variations
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dislocations
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System requirements provide the context for defining “materials failure.”

Materials Reliability is quantified as the probability that there will be 
sufficient (materials) property to meet system requirement. 
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Our technical approach: compare distributions
of materials properties and system requirements.



Elastomer aging can be inserted into finite 
element models to predict o-ring life.

Finite Element Simulation

Results of Materials Aging Study �

Reliability Prediction



σ

ε

σ = f (ε, T, t, µstruct., . . . )
failure criteria = f (σ, K, T, t, µstruct., . . . )  

Materials aging information can be inserted 
into finite element models to predict reliability.

Finite 
Element 

Simulation

Reliability Prediction

Results of Materials Aging Study �
Reliab. = f (t, geom., location, . . . )  R
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sulfur content
in environment

System Reliability

time

The materials model adds age 
awareness into the electrical system model.

The materials model is a time-dependent distribution of resistance. 

conductance
(leakage)

% of diode population
affected

time

Corroded diode



Aging and reliability concerns have led us 
to study many types of materials.

• lubricants
• electrical contacts
• encapsulants
• adhesives
• thin films
• welds
• brazes
• dielectric materials
• desiccants / getters

Materials aging models must be coupled into 
component and system performance simulation 

models.

• corrosion 
(electronics and structural alloys)

• solder degradation 
(TMF, diffusion, µstructural evolution)

• hermetic seals (glass and ceramic)
• energetic materials

(explosives, propellants, …)
• elastomer seals (o-rings), cable insulation
• stress voiding in ICs
• radiation hardness of electronics
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Quantifying the effects of materials aging on 
system reliability requires interdisciplinary effort.

Established by laboratory / field
testing, and calculation:

Needs:
• materials science/physics/

chemistry
• high performance

computing
• advanced engineering 

science simulation 
• sensors
• test / validation

Established by design, laboratory/field
testing, and calculation:

Needs:
• systems designers
• component designers
• engineering science
• materials science
• sensors
• test / validation

Established by test and calculation:
Needs:

• system and component designers
• reliability/surety assessors

Materials modeling/computer simulation will allow the time 
dependent distributions to be established with less reliance on 
empirical testing. Testing will always be required for validation.


