ASC Performance
Tools are critical to the
optimization of code
performance on large
scale ASC platforms.

B SUPERCOMPUTING CONFERENCE 2005

Maximizing Application
Performance on ASC Platforms

Effective utilization of ASC
computing platforms requires that
ASC codes be optimized to best
use the available computing and
communication rescurces. To perform
this optimization, developers need
insight into the details of program
execution. ASC has supported a variety
of tools for giving developers a detailed
view of how their applications run on
the platforms.

A portion of the ASC tool portfolio
will be highlighted by a series of
presentations at the ASC booth.
Accompanying demonstrations will
focus on investigative methodology and
actual analysis using ASC performance
measurement tools. We will step
through the process of optimization
for sample codes. We cover how
these tools can be used to examine
computation to communications
balance, computational efficiency, and
communication efficiency as well as
code coverage.

The tools presented range from
the mature to those currently under

Performance Profile Cycle

CE;m_r;E fD_eb ug
T i
Cf‘i:ﬂ’—'_";\é //Cf;i.mize
(Caw

development. For an in-depth
understanding of the performance
optimization process as well as
the tools, participants can request
demonstrations at the performance
tools demo station in which the cycle of
analysis, optimization, and re-analysis
is shown. Additionally, attendees can
request guest accounts for the duration
of the conference on a local cluster and
use the tools themselves either on the
code being demonstrated or code of
their own.

The following is a brief description
of the tools covered by these talks and
demonstrations:

Javelina — An advanced code coverage tool
that uses dynamic instrumentation. Dynamic
instrumentation allows code coverage data
to be acquired with a minimum overhead.
Once a section of code has been executed,
the instrumentation for that code is removed.
Thus, there is a performance hit only the
first time a section of code is executed.

This is particularly beneficial for scientific
applications where loops are repeatedly
evaluated. Furthermore, Javelina allows

one to apply advanced logical operations

to the acquired coverage data. This has
allowed LANL to optimize the testing of ASC
applications by focusing the testing effort on
the sections of code that are executed by end
users but are not exercised by test cases.

lewelina Saurce—Lode Code-Covrge Viewns

Lires Files main.f

1 writeds,)

SE wntels,*Frortran Calls
e writels,)

Ll

81 n =0

&2 y -5

[T tol = 901

[t if L0011 then
L1 call AddTen Senbnrollablels. dummyl
wnitel6,*IAdded ten to get W = 0
o endif

b3 i 1 Da2) then

" call deTen Unrellablelx)

k3 writeld, *Fidded ten to get x « ' =
Lt endil |

5 if [Do3) then
i call iddlen Liiminatablelx)

" writel6,*I'Added tes to get % - \H

EL 3 endif

% U
a [Dod) then

B call fidd_y_ToToleranceln,y, tol, dummy)

ax wrtels,*PAdded ' to get = =00

2% endif

B

8% il [00% | then

Ak call Mdi_y L agcd, i Reflect Dalun, 1 8,81

an wrtel,IAdded Reflectialueiyl, to get u«'n
am i

29

an wrtelf, ")

an: wrrited B, Feeensesesfartran Final = = %

ASC

\ fAovAnceo
SImMuLATION &
\ComPuTING™

for more information
J. M. Brandt
brandt@ca.sandia.gov- Vampir

C. M. Chambreau
checham@linl.gov — mpiP

S. Cranford
scranfo@sandia.gov — VProf

C. L. Janssen
cljanss@sandia.gov — VVProf

D. R. Kent
drkent@lanl.gov — Javelina

J. P. Kenny
jpkenny@sandia.gov — VVProf

M. W. Schulz
schulz6@lInl.gov — Open|SpeedShop

SAND 2005-6663P
ndia is & multiprogram laboratory operated by Sandia Corporation, a
ed Martin Company, for the United States Department of Energy's

Mational Nuclear Security Administration under contract DE-AC04-94AL85000.

formed under the auspices of the U.S. Department of Energy
California, Lawrence Livermore National Laboratory under

Ee an sto |
K7 Deta mad corpilele

- Wersage List Displayed
P Callste Theing Stasshes (s, mhlisazonds) [14 e

o . LI BENE e M €6
aAmE 00131 ewI AN Ll
AEE BT MR MM 86
1 ey 38156 B.E303 e beas 17

lsand[i] Sourca
FunchonTimer_mpi_wrappers.c 358 (WP end_Wragpen 4
| 359 sumtiz 4]

| b8 siedas s sy '

[= T L=

mpiP — (Shown above) A lightweight profiling
library for MP| applications. Because it only
collects statistical information about MPI
functions, mpiP generztes considerably less
overhead and much less data than tracing
tools. All the information captured by mpiP is
task-local. It only uses communication during
report generation, typically at the end of the
experiment, to merge results from all of the
tasks into one output file. The Mpipview tool
from the Tool Gear project can be used to
easily browse and analyze mpiP output.

DynTG — Atool for interactive, dynamic
instrumentation. It uses performance module
plugins to reconfigure the data acquisition
and provides a source browser that allows
users to insert any probe functionality
provided by the modules dynamically into
the target application. Any instrumentation
can be added both before and during the
application’s execution and the acquired
data are presented in real time within the
source viewer. This enables users to monitor
their applications’ progress and interactively
adapt the instrumentation based on their
observations.

Open|SpeedShop — An open-source

multi- platform Linux performance tool that
is initially targeted to support performance
analysis of applications running on both
single node and large scale 1A64, 1A32,
EMB4T, and AMD64 platforms. It is explicitly
designed with usability in mind and targets
both application developers and computer
scientists. Base functicnality includes metrics
like program counter sampling, exclusive
and inclusive user time, CPU hardware
performance counters, MPI event tracing,
1/O call tracing, and Floating Point exception
experiments. In addition, Open|SpeedShop
is designed to be modular and easily
extensible. It supports several levels of
plugins that allow users to add their own

B SUPERCOMPUTING CONFERENCE 2005

performance experiments. The infrastructure
and base components of Open|Speed Shop
are being released open source under GPL

and LGPL.

PAPI_TOT_CVE Furetion
B PV axlimar yyien)
0 2225 PY I malua 11 _yel_jeeviov_slaef)
1 bt e A Inek_pi) ere

1 82 ® P\'Z Foanve(]
1 gz Be TPV p_Ewh_esand _IImsErar censt'y
1 2o 3¢ ArtBeVI Tompute_teepid, t”, il int*, it il int, i, i)
PAP_TOT_cr [2 50 Lo aGHRA0I | LOCHICLM-Contabution: 1]
o) 3¢ TelDase refewncesc MetCourt’)
i omese 1w T_ork{Inamie’ outie, RUEeS I, e, t]

5 323%, 1260 3¢ DanaierShel m-.—u:.ccnu

0% 1 280
3 1 2%

by s 1 26%

3 20 1260 semchise GeuomarShes™, s Gauss trShe u
5 sot% =LH LY mSCHating

peddig o B, X AT i Replyrmescy

1 02% e e RCFiameriCn rigomn hasatss ACMMRITY

e — 0|

VProf — (Shown above) A project developed
for optimizing the CPU and cache
performance of programs. It provides routines
to collect statistical profiling information with
minimal overhead and programs to view
execution profiles from the command line

and GUI. Profile data are used to generate
performance summaries sorted by source-
code line, by file, and by function. Vprof can
also generate source-code annotation.

Vampir — An MPI trace tool. This type of
tool allows programmers to record the
communication patterns between the
processors in a parallel computation. A
viewer then lets them visualize the details not
only of where time is being spent, but also
of the temporal relationships of messages
with respect to each other and with respect
to computation. Programmers then use this
information to minimize the time spent doing
communication.

