Modeling Animal Movement to Help Control PPR
Update and Information Needs

Walt Beyeler, Patrick Finley, Melissa Finley
Chrysm Watson Ross, Michael Mitchell,
Leland Brooks Evans, William Fogleman

Disease Control Meeting - Dubai, UAE

June 22 – 24, 2013
Overview

- Problem
- How model results can help design controls
- Model outline - Processes
- Alternative control processes
- Example results from the model as it is
- Information needs
 - How some key processes work
 - Times and quantities
 - Control option specifics
 - Characteristics of diseases with similar symptoms
Characteristics of the system

- Information about incidence of infection is hard to obtain and communicate to central institutions.
- Diagnostic criteria might be hard to satisfy – how useful could partial or uncertain information be?
- Resources for intervening are scarce, badly distributed, and hard to deploy and apply.
Possible Controls

• Will need to be modeled themselves (rather than taken for granted) because of the special logistical difficulties in Afghanistan

• Possible kinds of controls:
 • Vaccination
 • Quarantine?
 • Culling? (as a control dynamic for the model, at least)?

• Constraints on administering controls that may constrain selection of a response
 • Communication of decisions
 • Compliance
 • Movement of required resources (vaccines, personnel, etc.)
Movement of Diseased Animals

1. Detection of disease (observation, diagnosis, reporting)
 - Incidence of disease at various locations
 - May be partial, inaccurate

2. Movement of disease -> Movement of animals -> Movement of people

3. Progression of infection in an animal

4. Diverse kinds of controls might be considered

Modeled Processes

- Transmitting Information
- Detecting Conditions
- Implementing Controls
- Deploying Information and Resources

Planning Responses
Space is described by a network rather than a map

Cultural practices and economics interact with geography to shape patterns of movement.

Animals are moved between very different kinds of locations (pasture, village markets, major markets). These create very different opportunities for disease transmission.

Certain elements of geography are relevant: seasonality, security, terrain, (pasturage value and transportability) political/tribal affiliations

Dr. Catherine A. Schloeder and Dr Michael J. Jacobs
Model Structure - II

Network elements
• Nodes are locations where animals stay for significant periods (e.g. pasture, villages) or change condition (e.g. markets, butchers)
• Links are pathways between nodes. Animals’ conditions might change as they move along links

System state
• Number of animals in different disease states at each location
• Individual (representative) animals are modeled in different stages of disease.

Disease moves through populations at locations
Transmission events depend on disease stage, animal density, location, access to treatment

People and animals move on the network

Disease progresses within animals
• Information about incidence is partial and may be inaccurate. Modeling imperfections and delays in monitoring the system allows to design control measures that will work in the real environment.

• Many features of the modeled system are uncertain (disease characteristics, nomadic patterns, cross-border interactions). Including these uncertainties in policy evaluation, and using them to guide information collection, is a central part of the approach.
Alternative Controls

- We can use the model to compare alternative controls
- Basis of comparison
 - Number of dead animals
 - Amount of vaccine used
- Alternative controls
 - Mass vaccination
 - Syndromic vaccination
- Uncertainties
 - Effectiveness of vaccine
 - Presence of other diseases
 - Likelihood of exhibiting symptoms
 - Compliance
 - ??
Example Outputs – Agent movement and behavior

Villager’s herds, Kuchi herds, Veterinarians, and couriers move among pastures, camps, villages, and large markets.

Veterinarians make rounds, administering vaccine according to the simulated strategy.
Example Outputs – Strategy performance

Mass Vaccination

Syndromic Vaccination

Uncertainty in parameters leads to many possible outcomes for each strategy.
Example Outputs – Critical Values

Sensitivity to Compliance

Sensitivity to Prevalence of Confounding Disease
Questions for the Group

• About Real-world conditions:
 - How often do veterinarians make their rounds?
 - How many locations do they visit?
 - How long does it take to distribute vaccine to the field?

• About Controls
 - What fraction of migrating herds would avoid border inspections?
 - Where might inspections be practically implemented?

• About Diseases with Similar Symptoms
 - What are the characteristics of a representative respiratory infection with PPR-like symptoms?