Evaluation of Policy Options using Uncertainty Analysis of Complex-system Model Results

Patrick Finley
pdfinle@sandia.gov

6/8/2011
• We construct CASoS models to understand real-world systems
• Since we are engineers, we also want to do stuff to and with the models
 - Perturb system with shocks to see how it responds and recovers
 - Find where to push the system to get it to modify emergent properties
• We often deal with big social and organizational problems
• Policy is one of society’s ways of effecting changes to real-world complex systems.
• Uncertainty can help determine best policies
Overview

• Intro to uncertainty analysis
 – Get more information out of model runs
 – Provide estimate of quality and reliability of results
 – Determine when the model sufficiently detailed

• Robust policy options overview
 – What makes a policy robust?
 – Why are robust policies superior?

• Example of robust policy design:
 – Sandia/VA pandemic influenza study
 – Lessons learned
 – Methods for uncertainty-driven policy design
• Uncertainty analysis: Determining how different types of uncertainty affect model output.

• Categories of uncertainty
 – Structural: How well do you understand the system
 – Parametric: How well have you characterized the inputs
 – Stochastic: Resulting from random processes

• Alternative view:
 – Aleatory (Stochastic): Irreducible randomness
 – Epistemic (Structural and Parametric): lack of knowledge

• Design of Experiment (DOE): Planning model runs and parameter variations to answer question adequately and efficiently
Complex System Model as a Black Box

Mathematical operations

Inputs

Outputs

Uncertainty Quantification
Student Orientation
June 2011
Basics of Uncertainty Analysis

- Create design of experiment to answer your question efficiently
- Run the model many times with different inputs.
- Perform Sensitivity Analysis (SA) to determine which inputs have the most effect on outputs
- Run uncertainty quantification (UQ) to identify sources of model uncertainty and how best to reduce it
- Run statistical significance tests to gauge reliability and quality of study results
- Repeat until satisfactory level of confidence reached.
Simple Sensitivity Analysis

Change One Input

Mathematical operations

Measure Changes in Outputs

Uncertainty Quantification
Student Orientation
June 2011
Simple Sensitivity Analysis

• Parameter sweeps
 - Run model many times
 - Vary single model input while holding all others fixed
 - Plot output vs. each input

• Pros:
 - Fast to set up
 - Easy to interpret

• Cons:
 - Takes a lot of runs
 - Ignores interactions
 - Only looks at small portion of parameter space.
Multivariate Sensitivity Analysis

Change Many Inputs

Mathematical operations

Measure Changes in Outputs
Multivariate Sensitivity Analysis Overview

• Multivariate Global Sensitivity Analysis:
 - Run model many times
 - Vary all of the input parameters for each run
 - Analyze relationship of all inputs to outputs

• Pros:
 - Looks at all possible values of all parameters.
 - Lets you analyze interaction effects

• Cons
 - Can’t interpret results visually
 - Standard methods require HUGE numbers of runs (e.g. 35,000 runs for simple 5-parameter model)
Meta-models for Sensitivity Analysis

Meta-model is a model of the model’s output.

Small sample of possible inputs to interpolate model results.
Meta-models for Sensitivity Analysis

Traditional Approach

Model → 10,000 Input/Output Sets → Sensitivity Analysis

- Run 10,000 Times

Meta-Model Approach

Model → Meta-Model → 10,000 Input/Output Sets → Sensitivity Analysis

- Run 100 Times
- Run Once
- Query 10k Times

Complex 2012
Student Orientation
June 2011
Why Use Meta-models?

- Far fewer model runs needed (~1%)
- More flexible and stable estimates
- Determine interaction effects
- Fast, approximate model results for input combinations that weren’t run
- Best bets: Gaussian process, radial basis functions, adaptive splines, and polynomial chaos expansion

```
Model Report

<table>
<thead>
<tr>
<th>Column</th>
<th>Theta</th>
<th>Sensitivity</th>
<th>Main Effect</th>
<th>sensitivity Interaction</th>
<th>hMid Interaction</th>
<th>pFill Interaction</th>
<th>lFull Interaction</th>
<th>consumptionTime Interaction</th>
<th>productionTime Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity</td>
<td>0.0071275</td>
<td>0.0013994</td>
<td>0.0007988</td>
<td>2.7455e-5</td>
<td>0.0004133</td>
<td>0.0001599</td>
<td></td>
<td>1.3507e-8</td>
<td>1.1883e-9</td>
</tr>
<tr>
<td>hMid</td>
<td>1.0880024</td>
<td>0.2295383</td>
<td>0.1078837</td>
<td>2.7455e-5</td>
<td>0.1215762</td>
<td>3.3322e-5</td>
<td></td>
<td>0.0000177</td>
<td>7.1324e-9</td>
</tr>
<tr>
<td>pFill</td>
<td>1.111107</td>
<td>0.8873233</td>
<td>0.7630665</td>
<td>0.0004133</td>
<td>0.1215762</td>
<td>3.3322e-5</td>
<td></td>
<td>1.1846e-5</td>
<td>9.9351e-7</td>
</tr>
<tr>
<td>lFull</td>
<td>0.1427269</td>
<td>0.0059568</td>
<td>0.0035089</td>
<td>0.0001599</td>
<td>3.3322e-5</td>
<td>0.0022544</td>
<td></td>
<td>2.3506e-7</td>
<td>5.8587e-9</td>
</tr>
<tr>
<td>consumptionTime</td>
<td>0.0010747</td>
<td>0.0000354</td>
<td>0.0000056</td>
<td>1.3507e-8</td>
<td>0.0000177</td>
<td>1.1846e-5</td>
<td>2.3506e-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>productionTime</td>
<td>8.7114e-5</td>
<td>1.0103e-6</td>
<td>2.6351e-9</td>
<td>1.1883e-9</td>
<td>7.1324e-9</td>
<td>9.9351e-7</td>
<td>5.8587e-9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[ \mu = 63.366829 \quad \sigma^2 = 527.00581 \]

-2^*LogLikelihood  
864.15235

Fit using the Cubic correlation function.
```
What Does Uncertainty Analysis Provide?

• Determines which parameters are most effective in changing model results
• Shows where improved data are needed
 - Better estimates of insensitive parameters not important
 - Important but poorly known parameters can use better data.
• Shows what you can safely ignore in your model
• Gives hard estimates on quality of model results under different scenarios.
• Answers questions of how trustworthy model results really are.
Robust Policy Options

- Single policies or combinations which create the desired outcome under a wide range of possible uncertainties
- Options or interventions often designed for specific scenario conditions
- Policies are implemented in a wide range of scenarios
- Some policies may not perform well under unexpected conditions.
- Modeling policy outcomes over all conceivable implementation scenarios helps to find robust options.
- Robust policy options: give good results wherever they are applied
Example of Robust Policy Design

- **Effective, Robust Design of Community Mitigation for Pandemic Influenza: A Systematic Examination of Proposed US Guidance** (Davey, Glass, Min, Beyeler, Glass, 2008)

- Evaluated seven interventions (e.g. school closing, quarantine, etc.) on severity of influenza outbreak for variety of assumptions.

- About 2 million model runs to explore combinations of parameters

- Ranked treatment and mitigation strategies
TABLE 1: 90% compliance

<table>
<thead>
<tr>
<th>ID Factor</th>
<th>None</th>
<th>ASsd</th>
<th>CTsd</th>
<th>CTsd,ASsd</th>
<th>S</th>
<th>S,ASsd</th>
<th>S,CTsd,A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>2780</td>
<td>1872</td>
<td>1111</td>
<td>624</td>
<td>221</td>
<td>207</td>
<td>124</td>
</tr>
<tr>
<td>Q</td>
<td>984</td>
<td>562</td>
<td>267</td>
<td>237</td>
<td>178</td>
<td>151</td>
<td>125</td>
</tr>
<tr>
<td>P</td>
<td>711</td>
<td>379</td>
<td>217</td>
<td>184</td>
<td>161</td>
<td>138</td>
<td>114</td>
</tr>
<tr>
<td>Q,T</td>
<td>600</td>
<td>324</td>
<td>218</td>
<td>159</td>
<td>140</td>
<td>132</td>
<td>119</td>
</tr>
<tr>
<td>Q,P</td>
<td>329</td>
<td>298</td>
<td>166</td>
<td>160</td>
<td>148</td>
<td>129</td>
<td>121</td>
</tr>
<tr>
<td>Pex</td>
<td>251</td>
<td>208</td>
<td>149</td>
<td>150</td>
<td>146</td>
<td>134</td>
<td>106</td>
</tr>
<tr>
<td>Q,Pex</td>
<td>267</td>
<td>187</td>
<td>138</td>
<td>145</td>
<td>122</td>
<td>117</td>
<td>104</td>
</tr>
<tr>
<td>Each cell represents mean of 100 model runs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colors indicate quality of solution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S = School Closure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q = Quarantine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASsd = Adult distancing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTsd = Child distancing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P = Prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pex = Extended Prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pandemic Study Generated Lots and Lots of Data

Uncertainty Quantification
Student Orientation
June 2011
Scatter plot of pandemic study results shows numbers of people infected and variability in model runs.
Desirable Outcomes and Low Variability Characterize Robust Policies

- Each policy tried on 100 random social networks
- 2,780 cases expected with no treatment
- Closing schools is best single option
 - Mean = 137 cases
 - Moderate variation
- Social distancing is not as effective
 - Mean = 987 cases
 - Wide variation
- Both policies in conjunction create robust solution
 - Mean = 118 cases
 - Narrow variation
- Robust solution:
 - Good outcome
 - Most stable to uncertainty
Uncertainty Analysis Best Practices for Complex Adaptive System Model Evaluation

- Define policy inputs as numerical ranges rather than categorical choices whenever possible
- Run simple parameter scans to get a feel for effects
- Run near-orthogonal Latin hypercube space-filling design on small sets of runs (n = ~200)
- Document sensitivity and interactions with meta-models
- Trace uncertainty from sources to results
- Apply uncertainty to rank policy options
- Look for interesting peaks and troughs in state space and distributions
- Use uncertainty to guide further refinement
Automate and simplify routine SA/UQ

Pandemic Influenza Study re-interpretation
- Apply all available UQ/SA methods to influenza model
- Determine which methods are most effective for CASoS
- Leland, James and Pat (with help from Infect3 team)

Machine Learning for SA/UQ
- Apply data mining techniques to model run results
- Ryan working with Pat and Brian

Agile Policy Design
- Extend CASoS Robust Policy work to dynamic setting
- Adaptively select best policies based on limited information, costs and reachability
- James, Tom, and Pat