
Leveraging Sociological Models
for Predictive Analytics

Richard Colbaugh
Sandia National Laboratories

Albuquerque, NM USA
colbaugh@comcast.net

Kristin Glass
New Mexico Institute of Mining and Technology

Socorro, NM USA
kglass@icasa.nmt.edu

Abstract—There is considerable interest in developing techniques
for predicting human behavior, for instance to enable emerging
contentious situations to be forecast or the nature of ongoing but
“hidden” activities to be inferred. A promising approach to this
problem is to identify and collect appropriate empirical data and
then apply machine learning methods to these data to generate
the predictions. This paper shows the performance of such learn-
ing algorithms often can be improved substantially by leveraging
sociological models in their development and implementation. In
particular, we demonstrate that sociologically-grounded learning
algorithms outperform gold-standard methods in three impor-
tant and challenging tasks: 1.) inferring the (unobserved) nature
of relationships in adversarial social networks, 2.) predicting
whether nascent social diffusion events will “go viral”, and 3.)
anticipating and defending future actions of opponents in adver-
sarial settings. Significantly, the new algorithms perform well
even when there is limited data available for their training and
execution.

Keywords—predictive analysis, sociological models, social networks,
empirical analysis, machine learning.

I. INTRODUCTION

There is great interest in developing techniques for accurately
predicting human behavior. For example, forecasting the even-
tual outcomes of social processes is a central concern in do-
mains ranging from popular culture to public policy to national
security [1]. The task of inferring the existence and nature of
activities which are presently underway but not directly ob-
servable, sometimes referred to as “predicting the present” [2],
is also of crucial importance in many applications. A promising
approach to obtaining such predictions is to identify and collect
empirical data which appropriately characterize the phenome-
non of interest and then to analyze these data using machine
learning (ML) methods [3]. Roughly speaking, ML algorithms
automatically “learn” relationships between observed variables
from examples presented in the form of training data; the
learned relationships are then used to generate predictions in
new situations. ML’s capacity to learn from examples, scale to
large datasets, and adapt to new or changing conditions make
this an attractive approach to predictive analysis.

The work reported in [4-13] illustrates some of the ways
ML can be used for forecasting, and in particular how these
techniques can be applied to online (Web) data in order to pre-
dict the outcomes of a broad range of social dynamics proc-

esses (e.g., social movements, cultural and financial markets,
protest events, political elections, and economic activity). Al-
ternatively, the papers [14-20] derive ML techniques for pre-
dicting the present, for instance enabling the existence of hid-
den links in social networks to be inferred, the sentiment of
informal communications to be estimated, and the spread of
various health-related phenomena to be remotely monitored.

Existing ML methods, although very useful, face at least
two challenges. First, the prediction accuracy obtainable even
with state-of-the-art algorithms is sometimes insufficient for
the task at hand, such as when the predictions are to be used to
inform high-consequence decisions (e.g., pertaining to national
security or human health). Second, applying ML techniques
typically requires that significant quantities of data be collected
and “labeled”. For example, deriving an ML scheme for esti-
mating the sentiment polarity of blog posts usually involves
collecting, processing, and manually labeling hundreds of ex-
ample posts expressing positive and negative sentiment [15].
Employing ML for forecasting ordinarily entails assembling
extensive time series traces, implying that such methods may
not be responsive enough to generate useful predictions about
rapidly emerging events [13]. Additionally, realizing good per-
formance with standard ML usually necessitates frequent re-
training to permit algorithms to adapt to evolving conditions,
which limits usefulness in many domains (e.g., in adversarial
settings in which opponents adapt their behaviors expressly to
defeat learning algorithms [21]).

This paper proposes that the challenges of predicting hu-
man behavior using ML often can be overcome by leveraging
sociological models in the development and implementation of
the learning algorithms. This proposal is motivated by our re-
cent research showing that including sociologically-meaningful
measures of network dynamics as features in ML algorithms
permits predictions regarding social dynamics which are sub-
stantially more accurate than those based on standard features
[22]. The present paper initiates a more systematic exploration
of the utility of combining ML with sociological models for
social prediction. In particular, we consider three important and
challenging tasks: 1.) inferring the “signs” (i.e., friendly or an-
tagonistic) of relationship ties in social networks, 2.) predicting
whether a nascent social diffusion event of interest will ulti-
mately propagate widely or will instead quickly dissipate, and
3.) anticipating and countering the future actions of opponents
in adversarial settings.

The paper makes four primary contributions. First, we con-
sider the problem of predicting edge-signs in social networks,
where positive/negative edges reflect friendly/antagonistic so-
cial ties, and derive a novel ML algorithm for edge-sign predic-
tion which leverages structural balance theory [23-25]. The
proposed algorithm outperforms a “gold-standard” method in
empirical tests with two large-scale online social networks,
with the boost in prediction accuracy being especially signifi-
cant in situations where only limited training data are available.
Interestingly, the inferred edge-signs are also shown to be use-
ful when predicting the way adversarial networks will fracture
under stress. Second, we examine the problem of forecasting
the ultimate reach of “complex contagion” events [26,27]. A
predictability assessment of complex contagion dynamics indi-
cates that metrics which should be predictive of a contagion’s
reach are fairly subtle measures of the network dynamics asso-
ciated with very early diffusion activity. These results are used
to derive an ML algorithm for predicting which complex con-
tagion events will ultimately “go viral” and which won’t, and it
is demonstrated that the algorithm outperforms standard meth-
ods in an empirical investigation of online meme propagation
[28]. Significantly, the new algorithm performs well even when
only limited time series data are available for analysis, permit-
ting reliable predictions early in the contagion lifecycle. It is
also shown that the proposed algorithm enables effective early
warning analysis for an important class of cyber threats.

Third, we consider the problem of predicting the actions of
opponents in adversarial settings [21], and combine ML with a
game-theoretic model [29,30] to a design predictive defense
system which is capable of countering current and future ad-
versary behaviors. An empirical study employing an extensive
set of cyber attack data shows that the proposed predictive de-
fense is much more effective than existing defense systems. For
instance, compared with standard cyber defenses, the predictive
method is better able to distinguish malicious attacks from le-
gitimate behaviors, allows successful defense against com-
pletely new attacks, and requires significantly less retraining to
maintain good performance in evolving threat conditions.

Finally, and more generally, the set of results presented in
this paper suggests that incorporating even simple concepts and
models from sociology can substantially improve the perform-
ance of ML prediction algorithms. These “sociology-aware”
algorithms outperform gold-standard methods, particularly
when there is limited data available for training and implement-
ing the methods, and can be applied at no additional cost. Thus
this initial investigation provides compelling support for the
proposal that sociological models can be usefully leveraged in
the design and implementation of predictive analytics methods.

We now present our results on inferring edge-signs (Section
II), forecasting contagion events (Section III), and designing
proactive defenses (Section IV). For each application we begin
by stating the prediction problem of interest and briefly review-
ing the sociological model we use in its solution. We then de-
rive an ML prediction algorithm which is based, in part, on this
sociological model, and evaluate the performance of the pro-
posed algorithm through an empirical case study. Additionally,
it is shown how these analysis algorithms can be applied to key
security informatics challenges.

II. PREDICTING LINK-SIGNS

A. Problem Formulation

Social networks may contain both positive and negative rela-
tionships – people form ties of friendship and support but also
of animosity or disapproval. These two types of social ties can
be modeled by placing signs on the links or edges of the social
network, with 1 and 1 reflecting friendly and antagonistic
relationships, respectively. We wish to study the problem of
predicting the signs of certain edges of interest by observing
the signs and connectivity patterns of the neighboring edges.
More specifically, for a directed social network Gs = (V, E)
with signed edges, where V and E are the vertex and edge sets,
respectively, we consider the following edge-sign prediction
problem: given an edge (u,v)E of interest for which the edge-
sign is “hidden”, infer the sign of (u,v) using information con-
tained in the remainder of the network.

It is natural to suspect that structural balance theory (SBT)
may be useful for edge-sign prediction. Briefly, SBT posits that
if wV forms a triad with edge (u,v), then the sign of (u,v)
should be such that the resulting signed triad possessing an odd
number of positive edges; this encodes the common principle
that “the friend of my friend is my friend”, “the friend of my
enemy is my enemy”, and so on [23,24]. Thus SBT suggests
that knowledge of the signs of the edges connecting (u,v) to its
neighbors may be useful in predicting the sign of (u,v).

B. Prediction Algorithm

We approach the task of predicting the sign of a given edge (u,
v) in the social network Gs as an ML classification problem.
The first step is to define, for a given edge, a collection of fea-
tures which may be predictive of the sign of that edge. To al-
low a comparison with the (gold-standard) prediction method
given in [25], we adopt the same two sets of features used in
that study. For a given edge (u,v), the first set of features de-
fined in [25] characterize the various triads to which (u,v) be-
longs. Because triads are directed and signed, there are sixteen
distinct types (e.g., the triad composed of positive edge (u,w)
and negative edge (w,v), together with (u,v), is one type). Thus
the first sixteen features for edge (u,v) are the counts of each of
the various triad types to which (u,v) belongs. Including these
features is directly motivated by SBT. For example, if (u,v)
belongs to many triads with one positive and one negative
edge, it may be likely that the sign of (u,v) is negative, since
then these triads would possess an odd number of positive
edges and therefore be “balanced”.

The second set of features defined in [25] measure charac-
teristics of the degrees of the endpoint vertices u and v of the
given edge (u,v). There are five of these features, quantifying
the positive and negative out-degrees of u, the positive and
negative in-degreed of v, and the total number of neighbors u
and v have in common (interpreted in an undirected sense).
Combining these five measures with the sixteen triad-related
features results in a feature vector x21 for each edge of in-
terest (see [25] for a more thorough discussion of these features
and the motivation for selecting them). The feature vector x
associated with an edge (u,v) will form the basis for predicting
the sign of that edge.

We wish to learn a vector c21 such that the classifier ori-
ent sign(cTx) accurately estimates the sign of the edge whose
features are encoded in vector x. Vector c is learned, in part,
from labeled examples of positive and negative edges. Addi-
tionally, the proposed learning algorithm leverages the insights
of SBT. A simple way to incorporate SBT is to assemble sets
V and V of positive and negative features, that is, sets of fea-
tures which according to SBT ought to be associated with posi-
tive and negative edges, respectively. The triads to which (u,v)
belongs in which the other two edges are positive are predicted
by SBT to “contribute” to (u,v) being positive; thus the four
features corresponding to triads with two positive labeled edges
are candidates for membership in V (there are four such fea-
tures because Gs is directed). Analogously, SBT posits that the
eight features indexing triads in which exactly one of the two
edges that neighbor (u,v) is positive are candidates for mem-
bership in V. (Note that the remaining four triad features index
triads in which both of the edges neighboring (u,v) are nega-
tive, and as there is less empirical support for SBT in this case
[25] these features are not assigned to either V or V.)

We now derive an ML algorithm for edge-sign prediction
which is capable of leveraging SBT in its learning process. The
development begins by modeling the problem data as a bipar-
tite graph Gb of edge-sign instances and features (see Figure 1).
If there are n edges and 21 features, it can be seen that the adja-
cency matrix A for graph Gb is given by

0X

X0
A T (1)

where matrix Xn21 is constructed by stacking the feature
vectors xi as rows, and each ‘0’ is a matrix of zeros.

Assume the initial problem data consists of a set of n edges,
of which nl n are labeled, and a set of labeled features Vl
VV, and suppose this label information is encoded as vec-
tors dnl and w|Vl|, respectively. Let destn be the vector
of estimated signs for the edges in the dataset, and define the
“augmented” classifier caug [dest

T cT]Tn21 that estimates

the polarity of both edges and features. Note that the quantity
caug is introduced for notational convenience and is not directly
employed for classification. More specifically, in the proposed
methodology we learn caug, and therefore c, by solving an opti-
mization problem involving the labeled and unlabeled training
data, and then use c to estimate the sign of any new edge of
interest with the simple classifier orientsign(cTx). Assume for
ease of notation that the edges and features are indexed so that
the first nl elements of dest and |Vl| elements of c correspond to
the labeled data.

We wish to learn an augmented classifier caug with the fol-
lowing three properties: 1.) if an edge is labeled, then the corre-
sponding entry of dest should be close to this 1 label; 2.) if a
feature is in the set Vl VV, then the corresponding entry
of c should be close to this 1 polarity; and 3.) if there is an
edge Xij of Gb that connects an edge x and a feature f and Xij
possesses significant weight, then the estimated polarities of x
and f should be similar. These objectives are encoded in the
following optimization problem:

ll

aug

V

1i

2
ii

n

1i
2

2
iiest,1aug

T
aug

c
) w (c)d (d Lcc min (2)

where L D A is the graph Laplacian matrix for Gb, with D
the diagonal degree matrix for A (i.e., Dii j Aij), and 1, 2
are nonnegative constants. Minimizing (2) enforces the three
properties we seek for caug, with the second and third terms
penalizing “errors” in the first two properties. To see that the
first term enforces the third property, observe that this expres-
sion is a sum of components of the form Xij(dest,i cj)

2. The
constants 1, 2 are used to balance the relative importance of
the three properties. The caug which minimizes objective func-
tion (2) can be obtained by solving the following set of linear
equations:

0

w

0

d

c

LLLL

LILLL

LLLL

LLLIL

2

1

aug

44434241

34V2333231

24232221

141312nl111

1

 (3)

where the Lij are matrix blocks of L of appropriate dimension.

We summarize this discussion by sketching an algorithm
for learning the proposed edge-sign prediction (ESP) classifier:

Algorithm ESP

1. Construct the set of equations (3).

2. Solve equations (3) for caug [dest
T cT]T (for instance

using the Conjugate Gradient method).

3. Estimate the sign of any new edge x of interest as: orient
 sign(cTx).

The utility of Algorithm ESP is now examined through a case
study involving edge-sign estimation for two social networks
extracted from the Wikipedia online encyclopedia.

instances

features

instances

features

Figure 1. Cartoon of bipartite graph data model Gb, in which
edge-instances (red vertices) are connected to the features (blue
vertices) they contain, and link weights (black edges) reflect the
magnitudes taken by the features in the associated instances.

C. Wikipedia Case Study

This case study examines the performance of Algorithm ESP
for the problem of estimating the signs of the edges in two so-
cial networks extracted from Wikipedia (WP), a collectively-
authored online encyclopedia with an active user community.
We consider the following WP social networks: 1.) the graph
of 103,747 edges corresponding to votes cast by WP users in
elections for promoting individuals to the role of ‘admin’ [25],
and 2.) the graph of 740,397 edges characterizing editor inter-
actions in WP [31]. In each network, the majority of the edges
(80) are positive. Thus we follow [25] and create balanced
datasets consisting of 20K positive and 20K negative edges for
the “voting” network [25], and 50K positive and 50K negative
edges for the “interaction” network [31].

This study compares the edge-sign prediction accuracy of
Algorithm ESP with that of the impressive gold-standard logis-
tic regression classifier given in [25]. The gold-standard algo-
rithm is applied exactly as described in [25]. Algorithm ESP is
implemented with parameter values 1 0.1 and 2 0.5, and
with the vector w constructed using the four “positive triad”
features V and eight “negative triad” features V noted above.
As a focus of the investigation is evaluating the extent to which
good prediction performance can be achieved even when only a
limited number of labeled edges are available for training, we
examine training sets which incorporate a range of numbers of
labeled edges: nl 0, 10, 20, 50, 100, 200.

Sample results from this study are depicted in Figures 2 and
3. Each data point in the plots represents the average of ten
trials. In each trial, the edges are randomly split into equal-size
training and testing sets, and a randomly selected subset of the
training edges of size nl is “labeled” (i.e., the labels for these
edges are made available to the learning algorithms). It can be
seen that Algorithm ESP outperforms the gold-standard method
on both datasets, and that the improved accuracy obtained with
the proposed “SBT-informed” algorithm is particularly signifi-
cantly when the number of labeled training instances is small.

D. Network Fracture Case Study

Recently it has been proposed that structural balance theory can
be used to predict the way a network of entities (e.g., individu-
als, countries) will split if subjected to stress [32], a capability
of relevance in many security applications. Briefly, [32] models
the polarity and intensity of relationships between the entities
of interest as a completely connected network with weighted
adjacency matrix ZZTnn, where matrix element zij repre-
sents the strength of the friendliness or unfriendliness between
entities i and j. Note that this network model is somewhat more
general than the one introduced above, in that each edge relat-
ing two individuals possesses both a sign and an intensity.

SBT is a “static” theory, positing what a stable configura-
tion of edge-signs in a social network should look like. How-
ever, underlying the theory is a dynamical idea of how unbal-
anced network triads ought to resolve themselves to become
balanced. A model which captures this underlying dynamics is
given by the simple matrix differential equation [32]

dZ/dt Z2, Z(0)Z0. (4)

To see the connection between these dynamics and SBT, ob-
serve that (4) specifies the following dynamics for entry zij:

dzij/dt k zik zkj.

Thus if triad {i,j,k} is such that zik and zkj have the same sign,
the participation of zij in this triad will drive zij in the positive
direction, while if they have opposite signs then zij will be
driven in the negative direction. These dynamics therefore fa-
vor triads with an odd number of positive edge-signs, consis-
tent with SBT [23].

The paper [32] proves that, for generic initial conditions Z0,
system (4) evolves to a balanced pattern of edge-signs in finite
time; the balanced configuration is guaranteed to be composed
of either all positive edges or two all-positive cliques connected
entirely by negative edges. These configurations can be inter-
preted as predictions of the way a social network described by

Figure 2. Results for WP “voting network” case study. The
plot shows how edge-sign prediction accuracy (vertical
axis) varies with the number of available labeled training
instances (horizontal axis) for two classifiers: gold-standard
(red) and Algorithm ESP (blue).

Figure 3. Results for WP “interaction network” case study.
The plot shows how edge-sign prediction accuracy (vertical
axis) varies with the number of available labeled training
instances (horizontal axis) for two classifiers: gold-standard
(red) and Algorithm ESP (blue).

Z0 will fracture if subjected to sufficient stress. More precisely,
given a model Z0 for a signed social network, model (4) can be
used as the basis for the following two-step procedure for pre-
dicting the way the network will fracture: 1.) integrate (4) for-
ward in time until it reaches singularity Zs (this singularity will
be reached in finite time), and 2.) interpret Zs as defining a split
of the network into two groups, where each group has all posi-
tive intra-group edges and the inter-group edges are all nega-
tive (and where one of the groups could be empty). See Figure
4 for an illustration of the dynamics of system (4).

Remarkably, [32] shows that predictions obtained in this
manner are in excellent agreement with two real-world cases of
group fracture for which there is empirical data: the division of
countries into Allied and Axis powers in World War II [33],
and the split of the well-studied Zachary Karate Club into two
smaller clubs [34]. However, the analysis presented in [32]
requires that matrix Z0 be completely known, that is, that all of
the “initial” relationships zij(0) between entities be measurable.
Such comprehensive data are not always available in practical
applications.

We have found that the requirement that relationship matrix
Z0 be perfectly known can be relaxed through the use of Algo-
rithm ESP. More specifically, given a subset of the relationship
data, the remaining weighted edge-signs can be estimated using
Algorithm ESP, and these estimates Z0 can be used in place of
Z0 when initializing (4). We have tested this procedure using
the relationship network proposed in [33] for 17 key countries
involved in World War II. This investigation demonstrates that
accurate prediction of which countries would eventually join
the Allied forces and which would become Axis members can
be made with less than 15% of the edge-signs known in ad-
vance. For example, data for only the relationships maintained
by Germany and the USSR is sufficient to enable correct pre-
diction of the ultimate alignment of all countries except Portu-
gal (see Figure 4). Similar results hold for analysis of the split
of the Zachary Karate Club [34].

III. EARLY WARNING FOR COMPLEX CONTAGIONS

A. Problem Formulation

There is significant interest in developing predictive capabili-
ties for social diffusion processes, for instance to permit early
identification of emerging contentious situations or accurate
forecasting of the eventual reach of potentially “viral” behav-
iors. This section considers the diffusion early warning prob-
lem: we suppose some sort of triggering event has taken place
and wish to determine, as early as possible, whether this event
will ultimately generate a large, self-sustaining reaction, in-
volving the propagation of behavioral changes through a sub-
stantial portion of a population, or will instead quickly dissi-
pate. Of particular interest is the propagation of behaviors that
are costly or controversial, or about which there is uncertainty,
as the diffusion of such activities often have significant societal
impact [13].

Recent research has shown that such behaviors may spread
as complex contagions, requiring social affirmation or rein-
forcement from multiple sources in order to propagate [26,27].
Because the diffusion dynamics for complex contagions are
different than those of “simple” contagions like disease epi-
demics, it is natural to suspect that developing effective early
warning algorithms for complex contagions may require care-
ful consideration of these more complex dynamics. In this sec-
tion we explore this possibility by deriving an early warning
method for complex contagions which explicitly leverages a
mathematical model for these diffusion events. We adopt the
contagion model proposed in [27], implemented on a class of
social networks which possess realistic topologies, and analyze
this model to identify features of the contagion that are likely to
be predictive of diffusion reach. These features are then used as
the basis for an ML algorithm which distinguishes complex
contagions that will propagate widely from those which will
quickly dissipate.

B. Predictability Assessment

Here we briefly describe the results of applying the predictabil-
ity assessment procedure presented in [1,13] to the task of iden-
tifying measurables that should be predictive of complex con-
tagion success. The discussion begins with short, intuitive re-
views of our predictability assessment process and network
diffusion modeling framework, and then summarizes the main
results obtained via this theoretical analysis.

Predictability. The basic idea behind the proposed approach to
predictability analysis is simple and natural: we assess predict-
ability by answering questions about the reachability of diffu-
sion events. To obtain a mathematical formulation of this strat-
egy, the behavior about which predictions are to be made is
used to define the system state space subsets of interest (SSI),
while the particular set of candidate measurables under consid-
eration allows identification of the candidate starting set
(CSS), that is, the set of states and system parameter values
which represent initializations that are consistent with, and
equivalent under, the presumed observational capability. As a
simple example, consider an online market with two products,
A and B, and suppose the system state variables consist of the
current market share for A, ms(A), and the rate of change of
this market share, r(A) (ms(B) and r(B) are not independent

Figure 4. SBT dynamics. The evolution of model (4) initial-
ized at the (scaled) “propensity” matrix given in [33] (hori-
zontal axis is time and vertical axis is edge-weight).

state variables because ms(A) ms(B) 1 and r(A) r(B) 0);
let the parameters be the advertising budgets for the products,
b(A) and b(B). The producer of A might find it useful to define
the SSI to reflect market share dominance by A, that is, the
subset of the two-dimensional state space where ms(A) exceeds
a specified threshold. If only market share and the advertising
budgets can be measured then the CSS is the one-dimensional
subset of state-parameter space consisting of the initial magni-
tudes for ms(A), b(A), and b(B), with r(A) unspecified.

Roughly speaking, the approach to predictability assess-
ment proposed in [1,13] involves determining how probable it
is to reach the SSI from a CSS and deciding if these reachabil-
ity properties are compatible with the prediction goals. If a sys-
tem’s reachability characteristics are compatible with the pre-
diction objectives the situation is deemed predictable (and oth-
erwise it is unpredictable). This setup permits the identification
of candidate predictive measurables: these are the measurable
states and/or parameters which most strongly affect the predict-
ability properties [1]. Continuing with the online market exam-
ple, if trajectories with positive early market share rates r(A)
are much more likely to yield market share dominance for A
than are trajectories with negative early r(A), independent of
the early values for ms(A), then the situation is unpredictable
(because r(A) is not measured). Adding the capacity to measure
r(A) would then increase system predictability, and depending
upon the task requirements this new measurement ability could
result in a predictable situation. A quantitative, mathematically-
rigorous presentation of this predictability assessment frame-
work can be found in [1,13].

Model. In complex contagion events, the probability of adopt-
ing a controversial or unproven behavior or idea increases with
the number of other adopting individuals, and not merely the
number of exposures to the contagion (so that multiple interac-
tions with the same adopting individual do not increase the
likelihood of adoption, as it does in simple contagions) [26,27].
Recently the authors of [27] proposed an empirically-grounded
model for complex contagions in which individuals interact via
a social network of arbitrary topology, and the probability that
individual A adopts a given activity or idea is a function of the
number of A’s adopting neighbors; the functional form of this
adoption “influence curve” is obtained empirically (see [27] for
a detailed description of the model).

The dynamics of contagion may depend upon the topologi-
cal structure of the underlying social network. This dependence
suggests that, in order to identify the features of complex con-
tagions which have predictive power, it is necessary to assess
predictability using social network models with realistic to-
pologies. Therefore in this study we implement the complex
contagion model [27] with social networks that possess four
topological properties which are ubiquitous in the real-world
[13]: right-skewed degree distribution, transitivity, community
structure, and core-periphery structure.

It is shown in [1] that stochastic hybrid dynamical systems
(S-HDS) provide a useful mathematical formalism with which
to represent social contagions on realistic networks (see Figure
5). An S-HDS is a feedback interconnection of a discrete-state
stochastic process, such as a Markov chain, with a family of
continuous-state stochastic dynamical systems [1]. Combining

discrete and continuous dynamics within a unified, computa-
tionally tractable framework offers an expressive, scalable
modeling environment that is amenable to formal mathematical
analysis. In particular, S-HDS models can be used to efficiently
represent and analyze social contagion on large-scale networks
with the four topological properties listed above [13].

As an intuitive illustration of the way S-HDS enable effec-
tive, tractable representation of complex contagion phenomena,
consider the task of modeling contagion on a network possess-
ing community structure. As shown in Figure 5, the contagion
proceeds in two ways: 1.) intra-community diffusion, involving
frequent interactions between individuals within the same
community and the resulting gradual change in the concentra-
tions of adopting (red) individuals, and 2.) inter-community
diffusion, in which the “infection” jumps from one community
to another, for instance because an adopting individual encoun-
ters a new community. S-HDS models offer a natural frame-
work for representing these dynamics, with the S-HDS con-

Figure 5. Modeling complex contagion on networks with
community structure via S-HDS. The cartoon at top left
depicts a network with three communities. The cartoon at
bottom illustrates contagion within a community k and
between communities i and j. The schematic at top right
shows the basic S-HDS feedback structure.

discrete
system

continuous
system

inputs

inputs

mode
outputs

discrete
system

continuous
system

inputs

inputs

mode
outputs

discrete
system

continuous
system

inputs

inputs

mode
outputs

inter-community
dynamics

intra-community
dynamics

i

j

k

inter-community
dynamics

inter-community
dynamics

inter-community
dynamics

intra-community
dynamics

intra-community
dynamics

i

j

k

i

j

k

tinuous system modeling the intra-community dynamics (e.g.,
via stochastic differential equations), the discrete system cap-
turing inter-community dynamics (e.g., using a Markov chain),
and the interplay between these dynamics being encoded in the
S-HDS feedback structure (e.g., the transition probabilities of
the discrete system Markov chain may depend upon the state of
the continuous system) [13].

Results. We applied the predictability assessment methodology
summarized above to a “realistic network” version of the com-
plex contagion model given in [27] (i.e., the model obtained by
implementing the dynamics specified in [27] on a class of net-
works possessing the four topological properties summarized
above). The main finding of this study is that the predictability
of the reach of complex contagions depends crucially upon the
social network’s community and core-periphery structures.
These findings are now summarized more quantitatively.

We adopt a modularity-based definition for network com-
munity structure [35], whereby a good partitioning of a net-
work’s vertices into communities is one for which the number
of edges between putative communities is smaller than would
be expected in a random partitioning. To be concrete, a modu-
larity-based partitioning of a network into two communities
maximizes the modularity Q sT B s / 4m, where m is the total
number of edges in the network, the partition is specified with
the elements of vector s by setting si 1 if vertex i belongs to
community 1 and si 1 if it belongs to community 2, and the
matrix B has elements Bij Aij kikj / 2m, with Aij and ki de-
noting the network adjacency matrix and degree of vertex i,
respectively. Partitions of the network into more than two
communities can be constructed recursively [35]. This defini-
tion enables the specification of the first candidate predictive
feature nominated by our predictability assessment: early dis-
persion of a complex contagion process across network com-
munities should be a reliable predictor that the ultimate reach
of the contagion will be significant (see Figure 6).

We characterize network core-periphery structure in terms
of the k-shell decomposition [36]. To partition a network into
its k-shells, one first removes all vertices with degree one, re-
peating this step if necessary until all remaining vertices have

degree two or higher; the removed vertices constitute the 1-
shell. Continuing in the same way, all vertices with degree two
(or less) are recursively removed, creating the 2-shell. This
process is repeated until all vertices have been assigned to a k-
shell, and the shell with the highest index, the kmax-shell, is
deemed to be the core of the network. This definition permits
us to state the second candidate predictive feature nominated
via theoretical predictability assessment: early contagion activ-
ity within the network kmax-shell should be a reliable predictor
that the reach of the diffusion will be significant (see Figure 7).

C. Prediction Algorithm

Consider the problem of predicting, very early in the lifecycle
of a complex contagion event, whether or not the contagion
will propagate widely. We adopt an ML approach to this early
warning task: given a triggering incident, one or more informa-
tion sources which reflect the reaction to this trigger by a popu-
lation of interest, and a specification for what constitutes an
“alarming” reaction, the goal is to learn a classifier that accu-
rately predicts, as early as possible, whether or not reaction to
the event will eventually become alarming. The ML classifier
used in this investigation is the Avatar ensembles of decision
trees (A-EDT) algorithm [37]; qualitatively similar results were
obtained in tests with other, less sophisticated classifiers [3].

A key step in early warning analysis is determining which
characteristics of the phenomenon of interest, if any, possess
exploitable predictive power. Based on the results of the pre-
ceding predictability assessment study, we consider three gen-
eral classes of features: 1.) intrinsics-based features – measures
of the inherent properties and attributes of the “object” being
diffused, 2.) simple dynamics-based features – metrics which
capturing simple properties of the diffusion dynamics (e.g., the
rate at which the diffusion is propagating), 3.) network dynam-
ics-based features – measures that characterize the way the
early diffusion is progressing relative to the network’s commu-
nity and core-periphery structures. Precise definitions for the
features in these classes are, of course, application dependent.

The proposed approach to early warning analysis is to iden-
tify and collect features from these classes for the event of in-
terest, input the feature values to the A-EDT classifier, and then

Figure 7. Early diffusion within the core is predictive. The
cartoon illustrates the predictive feature associated with k-
shell structure: contagions initiated with three “seed” indi-
viduals are much more likely to propagate widely if the
seeds reside within the network’s core (left) rather than at
its periphery (right).

Figure 6. Early dispersion across communities is predictive.
The cartoon illustrates the predictive feature associated with
community structure: contagions initiated with five “seed”
individuals are much more likely to propagate widely if the
seeds are dispersed across multiple communities (left) rather
than concentrated within a single community (right).

run the classifier to generate a warning prediction (i.e., a fore-
cast that the event is expected to become ‘alarming’ or remain
‘not alarming’). The algorithm presented below specifies this
procedure in general terms, and illustrative instantiations of the
procedure are given in the discussions of the case studies. In
what follows it is assumed that social media data form the pri-
mary source of information concerning the event of interest
[38]. However, the analytic process is similar when alternative
sources of data are employed [13].

Consider the following early warning algorithm:

Algorithm EW

Given: a triggering incident, a definition for what constitutes an
‘alarming’ reaction, and a set of social media sites (e.g., blogs)
B which are relevant to the early warning task.

Initialization: train the A-EDT classifier on a set of events that
are qualitatively similar to the triggering event of interest and
are labeled as ‘alarming’ or ‘not alarming’.

Procedure:

1. Assemble a lexicon of keywords L that pertain to the trig-
gering event under study.

2. Conduct a sequence of Web crawls and construct a time
series of blog graphs GB(t). For each time period t, label
each blog in GB(t) as ‘active’ if it contains a post mention-
ing any of the keyword in L and ‘inactive’ otherwise.

3. Form the union GB = tGB(t), partition GB into network
communities and into k-shells, and map the partition ele-
ment structure of GB back to each of the graphs GB(t).

4. For each graph GB(t), compute the values for all features
(intrinsics, simple dynamics, and network dynamics).

5. Apply the A-EDT classifier to the time series of features,
i.e., the features obtained for the sequence of blog graphs
{GB(t0), …, GB(tp)}, where t0 and tp are the triggering event
time and present time, respectively. Issue a warning alert if
the classifier output is ‘alarming’.

We now offer a few remarks concerning Algorithm EW.
The keywords in Step 1 can be identified with the help of sub-
ject matter experts and also through computational means (e.g.,
via meme analysis [28]). Step 2 is by now standard, and a vari-
ety of tools exist which can perform these tasks [38]. In Step 3,
the blog network can be partitioned into communities and k-
shells using modularity-based community extraction [35] and
standard k-shell decomposition [36], respectively. The particu-
lar choices of metrics for the intrinsics, simple dynamics, and
network dynamics features computed in Step 4 tend to be prob-
lem specific, and typical examples are given in the case studies
below. Finally, in Step 5 the feature values obtained in Step 4
serve as inputs to the A-EDT classifier, and the output of the
classifier is used to decide whether an alert should be issued.

D. Meme Case Study

The goal of this case study is to apply Algorithm EW to the
task of predicting whether or not a given meme (i.e., short tex-
tual phrase which propagates relatively unchanged online) will
“go viral”. Although it may seem that meme diffusion is not
sufficiently costly or controversial to qualify as a complex con-

tagion, [27] shows that political memes appear to propagate in
this way. Our main source of data on meme dynamics is the
dataset archived at the site http://memetracker.org [39] by the
authors of [28]. Briefly, the archive [39] contains time series
data characterizing the online diffusion of ~70,000 memes dur-
ing the period between 1 August and 31 December 2008. We
are interested in using Algorithm EW to distinguish successful
and unsuccessful political memes early in their lifecycle. More
precisely, the prediction task is to classify memes into two
groups – those which will ultimately be successful (acquire
more than S posts) and those that will be unsuccessful (attract
fewer than U posts) – very early in the meme lifecycle.

To support an empirical evaluation of the utility of Algo-
rithm EW for this problem, we downloaded from [39] the time
series data for slightly more than 70,000 memes. These data
contain, for each meme M, a sequence of pairs (t1, URL1)M, (t2,
URL2)M, …, (tT, URLT)M, where tk is the time of appearance of
the kth blog post or news article that contains at least one men-
tion of meme M, URLk is the URL of the blog or news site on
which that post/article was published, and T is the total number
of posts that mention meme M. From this set of time series we
randomly selected 100 “successful” political meme trajectories,
defined as those corresponding to memes which attracted at
least 1000 posts during their lifetimes, and 100 “unsuccessful”
political meme trajectories, defined as those whose memes
acquired no more than 100 total posts.

Two other forms of data were collected for this study: 1.) a
large Web graph which includes websites (URLs) that appear
in the meme time series, and 2.) samples of the text surround-
ing the memes in the posts which contain them. More specifi-
cally, we sampled the URLs appearing in the time series for our
set of 200 successful and unsuccessful memes and performed a
Web crawl that employed these URLs as “seeds”. This proce-
dure generated a Web graph, denoted GB, that consists of ap-
proximately 550,000 vertices (websites) and 1.4 million edges
(hyperlinks), and includes essentially all of the websites which
appear in the meme time series. To obtain samples of text sur-
rounding memes in posts, we randomly selected ten posts for
each meme and then extracted from each post the paragraph
which contains the first mention of the meme.

Algorithm EW employs three types of features: intrinsics,
simple dynamics-based, and network dynamics-based. We now
describe the instantiation of each of these feature classes for the
meme problem. Consider first the intrinsics features, which for
the meme application become language-based measures. Each
“document” of text surrounding a meme in its (sample) posts is
represented by a simple “bag of words” feature vector x|V|,
where the entries of x are the frequencies with which the words
in the vocabulary V appear in the document. A language-based
feature which might reasonably be expected to be predictive of
meme propagation is the sentiment or emotion of documents
containing the meme. A simple way to quantify a document’s
sentiment/emotion is through the use of appropriate lexicons.
Let s|V| denote a lexicon vector, in which each entry of s is a
numerical “score” quantifying the sentiment/emotion intensity
of the corresponding word in vocabulary V. The aggregate sen-
timent/emotion score of document x can then be computed as
score(x) sTx / sT1, where 1 is a vector of ones. Thus score(.)
estimates document sentiment or emotion as a weighted aver-

age of the sentiment or emotion scores for the words compris-
ing the document. (Note that if no sentiment or emotion infor-
mation is available for a particular word in V then the corre-
sponding entry of s is set to zero.)

To characterize the emotion content of a document we use
the Affective Norms for English Words (ANEW) lexicon [40],
while positive or negative sentiment is quantified via the “IBM
lexicon” [41]. This approach generates four language features
for each meme: the happiness, arousal, dominance, and posi-
tive/negative sentiment of the sample text surrounding that
meme. As a preliminary test, we computed the mean emotion
and sentiment of text surrounding the 100 successful and 100
unsuccessful memes in our dataset. On average the text sur-
rounding successful memes is happier, more active, more
dominant, and more positive than that surrounding unsuccess-
ful memes (p0.0001), so it is at least plausible that the lan-
guage features may possess some predictive power.

Consider next two simple dynamics-based features, defined
to capture basic characteristics of the early evolution of meme
post volume: 1.) #posts() – the cumulative number of posts
mentioning the given meme by time (where is small relative
to the typical meme lifespan), and 2.) post rate() – a simple
estimate of the rate of accumulation of these posts at time .
Recall that predictability assessment suggests that both early
dispersion of contagion activity across network communities
and early contagion activity within the network core ought to
be predictive of meme success. These insights motivate the
definition of two network dynamics-based features for meme
prediction: 1.) community dispersion() – the cumulative num-
ber of network communities in the blog graph GB that, by time
, contain at least one post which mentions the meme, and 2.)
#k-core blogs() – the cumulative number of blogs in the kmax-
shell of blog graph GB that, by time , contain at least one post
which mentions the meme.

This case study compares the meme early warning accuracy
of Algorithm EW, as applied to meme prediction, with that of
two other prediction methods: a language-based (LB) strategy
and a standard-dynamics (SD) scheme. The LB predictor uses
the four language features noted above with the A-EDT classi-
fier to try to distinguish successful and unsuccessful memes,
and achieves a prediction accuracy of 66.5% (ten-fold cross-
validation). Since simply guessing ‘successful’ for all memes
gives an accuracy of 50%, it can be seen that the language in-
trinsics, when used alone, possess relatively limited predictive
power.

Next we compare the predictive performance of the SD
classifier with that of Algorithm EW. The SD predictor com-
bines the four language features with the two simple dynamics
features, #posts() and post rate(), within the A-EDT classi-
fier. Because this is representative of state-of-the-art prediction
schemes [e.g., 5-8], this approach is referred to as the gold-
standard algorithm. The application of Algorithm EW to meme
prediction combines the language features with four network
dynamics measures: #posts(), post rate(), community disper-
sion(), and #k-core blogs(). Sample results from this empiri-
cal test are depicted in Figure 8. Each data point represents the
average accuracy over ten trials (ten-fold cross-validation). It

can be seen from Figure 8 that Algorithm EW outperforms the
gold-standard method, especially in the important situation in
which it is desired to form predictions soon after the meme is
detected. Indeed, these results show that useful predictions can
be obtained with Algorithm EW within the first twelve hours
after a meme is detected (this corresponds to 0.5% of the aver-
age meme lifespan). Interestingly, analysis of feature predictive
power [3] shows that the most predictive features are, in de-
creasing order, 1.) community dispersion, 2.) #k-core blogs, 3.)
#posts, and 4.) post rate, which supports the conclusions of the
complex contagion-based predictability assessment.

E. Early Warning Case Study

This case study explores the ability of Algorithm EW to pro-
vide reliable early warning for politically-motivated distributed
denial-of-service (DDoS) attacks, an important class of cyber
threats. In particular, we are interested in exploring the utility
of Algorithm EW when using social media as an information
source. Toward this end, we first identified a set of Internet
disruptions which included examples from three distinct classes
of activity: 1.) successful DDoS attacks (the events for which
we seek early warning; 2.) natural events which disrupt Internet
service (disturbances, like earthquakes, that impact the Internet
but for which it is known that no early warning signal exists in
social media); 3.) quiet periods (periods during which there is
social media “chatter” concerning impending DDoS attacks but
no successful attacks occurred). Including events selected from
these three classes is intended to provide a fairly comprehen-
sive test, as these classes correspond to 1.) the domain of inter-
est, 2.) a set of disruptions which impact the Internet but have
no social media warning signal, and 3.) a set of “non-events”
which do not impact the Internet but do possess putative social
media warning signals.

We selected twenty events from these three classes:

Politically-motivated DDoS attacks:

Figure 8. Results for meme early warning case study. The
plot shows how prediction accuracy (vertical axis) varies
with the length of time that has elapsed between meme de-
tection and meme prediction (horizontal axis) for the two
classifiers: gold-standard (red) and Algorithm EW (blue).

▪ Estonia event in April 2007;

▪ CNN/China incident in April 2008;

▪ Israel/Palestine conflict event in January 2009;

▪ DDoS associated with Iranian elections in June 2009;

▪ WikiLeaks event in November 2010;

▪ Anonymous v. PayPal, etc. attack in December 2010;

▪ Anonymous v. HBGary attack in February 2011.

Natural disturbances:

▪ European power outage in November 2006;

▪ Taiwan earthquake in December 2006;

▪ Hurricane Ike in September 2008;

▪ Mediterranean cable cut in January 2009;

▪ Taiwan earthquake in March 2010;

▪ Japan earthquake in March 2011.

Quiet periods:

Seven periods, from 2005 through 2011, during which there
were discussions in social media of DDoS attacks on various
U.S. government agencies but no successful attacks occurred.

We collected two forms of data for each of these twenty
events: cyber data and social data. The cyber data consist of
time series of routing updates which were issued by Internet
routers during a one month period surrounding each event.
More precisely, these data are the Border Gateway Protocol
(BGP) routing updates exchanged between gateway hosts in
the Autonomous System network of the Internet. The data were
downloaded from the publicly-accessible RIPE collection site
[42] using the process described in [43] (see [43] for additional
details and background information on BGP routing dynamics).
The temporal evolution of the volume of BGP routing updates
(e.g., withdrawal messages) gives a coarse-grained measure of
the timing and magnitude of large Internet disruptions and thus
offers a simple and objective way to characterize the impact of
each of the events in our collection. The social data consist of
time series of social media mentions of cyber attack-related
keywords and memes detected during a one month period sur-
rounding each of the twenty events. These data were gathered
using the procedure specified in Algorithm EW.

We apply Algorithm EW to the task of distinguishing the
seven DDoS attacks from the thirteen other events in the event
set. For simplicity, in this case study we do not use any intrin-
sics-based features (e.g., language metrics) in the A-EDT clas-
sifier, and instead rely upon the four dynamics-based features
defined in the meme study. Because the event set in this study
includes only twenty incidents, we apply Algorithm EW with
two-fold cross-validation. In the case of DDoS events, the blog
data made available to Algorithm EW is limited to posts made
during the five week period which ended one week before the
attack. For the six natural disturbances, the blog data includes
all posts collected during the six week period immediately prior
to the event, while in the case of the seven non-events, the blog
data includes the posts gathered during a six week interval
which spans discussions of DDoS attacks on U.S. government
agencies.

In this evaluation, Algorithm EW achieves perfect accu-
racy, correctly identifying all ‘attack’ and ‘non-attack’ events.
If the test is made more difficult, so that the blog data made
available to Algorithm EW for attack events is limited to a four
week period that ends two weeks before the attack, the pro-
posed approach still achieves 95% accuracy, An examination
of the predictive power of the four features used as inputs to the
A-EDT classifier reveals that community dispersion is the most
predictive measure.

IV. PREDICTIVE DEFENSE

A. Problem Formulation

Coevolving adversarial dynamics are present in many applica-
tion areas, including national security, public policy, business,
and economics. There is significant interest to develop proac-
tive approaches to dealing with adversarial behavior, in which
opponents’ future strategies are anticipated and these insights
are incorporated into defense designs. Recent work suggests
that previous hostile actions and defender responses provide
predictive information about future attacker behavior because
of the coevolving relationship that exists between adversaries
[44,21]. However, little is known about how to systematically
exploit this predictability to design effective countermeasures.
This section considers the following concrete instantiation of
the proactive defense problem: given some (possibly limited)
history of attacker actions, design a predictive defense system
which performs well against both current and future attacks.

It is reasonable to expect that concepts and techniques from
game theory [29,30] might be useful in designing predictive
defense systems, and indeed such approaches have been at-
tempted in different domains (see [21,45] for relevant back-
ground). These investigations, although useful, have not tended
to produce practically-implementable results. While there are
several challenges to successfully applying game-theoretic
methods to adversarial dynamics of real-world scale and com-
plexity, we mention two that have been particularly daunting.
First, the space of possible attacker actions is typically very
large in realistic environments. Because the complexity of
game models usually increases exponentially with the number
of actions available to the players [29,45], this has made game
models intractable in practice. And second, it has proved diffi-
cult to develop models that capture evolving attacker behavior
in any but the most idealized (and unrealistic) situations.

In this section we overcome these challenges by approach-
ing the task of developing game-based models for adversarial
interactions from a sociological perspective [30]. More specifi-
cally, we develop a simple game model which explicitly lever-
ages empirical data directly within an ML framework, enabling
adversary behavior to be predicted and countered in realistic
settings. Crucially, the proposed approach derives the optimal
defense for the predicted attacks, rather than attempting to ob-
tain perfect predictions, and therefore enjoys robust perform-
ance in the presence of (inevitable) prediction errors. (See, for
instance, [30] for an argument for the need to explicitly connect
game models with data if game theory is to impact the empiri-
cally-oriented science of sociology, and for suggestions con-
cerning some ways sociology might contribute to an empirical
game theory.)

We approach the task of countering adversarial behavior as
an ML classification problem, in which the objective is to dis-
tinguish innocent and malicious activity. Each instance of ac-
tivity is represented as a feature vector x|F|, where entry xi
of x is the value of feature i for this instance and F is the set of
instance features. In what follows, F is a set of “reduced” fea-
tures, obtained by projecting the original feature vectors into a
lower-dimensional space. While feature reduction is standard
practice in ML [3], we show below that aggressive reduction
allows us to efficiently manage the complexity of our game
models. Behavior instances x belong to one of two classes:
positive/malicious and negative/innocent (generalizing to more
than two behavior classes is straightforward [3]). The goal is to
learn a vector w|F| such that classifier orient sign(wTx)
accurately estimates the class of behavior x, returning 1 (1)
for malicious (innocent) activity.

B. Predictability Assessment

As indicated in Section III, it is useful to assess the predictabil-
ity of a phenomenon before attempting to predict its evolution,
for example to identify measurables which possess predictive
power [1,13]. There has been limited theoretical work assessing
predictability of adversarial dynamics, but existing studies sug-
gest attack-defend coevolution often generates predictable dy-
namics. For instance, although [46] finds that, in some repeated
games, certain player strategies lead to chaotic dynamics, [22]
shows a large range of player strategies in repeated two-player
and multi-player games result in predictable adversarial behav-
ior. Here we supplement this theoretical work by conducting an
empirical investigation of predictability, and select as our case
study a cyber security problem – Spam filtering – which pos-
sesses attributes that are representative of many adversarial
domains.

To conduct this investigation, we first obtained a large col-
lection of emails from various publicly-available sources for
the period 1999-2006, and added to this corpus a set of Spam
emails acquired from B. Guenter’s Spam trap for the same time
period. Following standard practice, each email is modeled as a
“bag of words” feature vector x|F|, where the entries of x are
the frequencies with which the words in vocabulary F appear in
the message. The resulting dataset consists of ~128,000 emails
composed of more than 250,000 features. We extracted from
this collection of Spam and non-Spam emails the set of mes-
sages sent during the 30 month period between January 2001
and July 2003 (other periods exhibit very similar behavior).
Finally, the dimension of the email feature space is reduced via
singular value decomposition (SVD) analysis [3], yielding a
reduction in feature space dimension |F| of four orders of mag-
nitude (from ~250K to 20).

We wish to examine, in an intuitive way, the predictability
of Spammer adaptation, and propose two simple but reasonable
criteria with which to empirically evaluate predictability: sen-
sibility and regularity (a more systematic and mathematically-
rigorous frameworks for defining and assessing predictability is
derived in [1,13] and summarized in Section III). More specifi-
cally, and in the context of Spam, it would be sensible for
Spammers to adapt their messages over time in such a way that
Spam feature vectors xS become more like feature vectors xNS
of legitimate emails, and regularity in this adaptation might

imply that the values of the individual elements of xS approach
those of xNS monotonically.

To permit convenient examination of the evolution of fea-
ture vectors xS and xNS during the 30 month period under study,
the emails are first binned by quarter. Next, the average values
for each of the 20 (reduced dimension) features are computed
for all Spam emails and all non-Spam emails (separately) for
each quarter. Figure 9 illustrates the feature space dynamics of
Spam and non-Spam messages for one representative element
(F1) of this reduced feature space. As seen in the plot, the value
of feature F1 for Spam approaches the value of this feature for
non-Spam, and this increasing similarity is a consequence of
changes in the composition of Spam messages (the value of F1
for non-Spam emails is essentially constant). The dynamics of
the other feature values (not shown) are analogous.

Observe that the Spam dynamics illustrated in Figure 9 re-
flect sensible adaptation on the part of Spammers: the features
of Spam email messages evolve to appear more like those of
non-Spam email and therefore to be more difficult to identify.
Additionally, this evolution is regular, with feature values for
Spam approaching those for non-Spam in a nearly-monotonic
fashion. Thus this empirical analysis indicates that coevolving
Spammer-Spam filter dynamics possesses some degree of pre-
dictability, and that the features employed in Spam analysis
may have predictive power; this result is in agreement with the
conclusions of the theoretical predictability analysis reported in
[22]. Moreover, because many of the characteristics of Spam-
Spam defense coevolution are also present in other adversarial
systems, this result suggests these other systems may have ex-
ploitable levels of predictability as well.

C. Predictive Defense

The proposed approach to designing a predictive defense sys-
tem which works well against both current and future attacks is
to combine ML with a simple game-based model for adversary

Figure 9. Spam/non-Spam evolution in feature space. The
plot depicts evolution of feature F1 for Spam (red) and
non-Spam (blue) during the ten quarters of the study.

behavior. In order to apply game-theoretic methods, it is neces-
sary to overcome the complexity and model-realism challenges
mentioned above. We address problem complexity by model-
ing adversary actions directly in an aggressively-reduced fea-
ture space, so that the (effective) space of possible adversary
actions which must be considered is dramatically decreased.
The difficulty of deriving realistic representations for attacker
behavior is overcome by recognizing that the actions of attack-
ers can be modeled as attempts to transform data (i.e., feature
vectors x) in such a way that malicious and innocent activities
are indistinguishable. (This is in contrast to trying to model the
attack instances “from scratch”). It is possible to model attacker
actions as transformations of data because, within an empirical
ML problem formulation, historical attack data are available in
the form of training instances.

We model adversarial coevolution as a sequential game, in
which attacker and defender iteratively optimize the following
objective function:

i
i

T
i

33

aw
a)(xw,ylosswa max min (5)

In (5), the loss function represents the misclassification rate for
the defense system, where {yi, xi}

n
i=1 denotes pairs of activity

instances xi and labels yi, and vector w parameterizes the de-
fense (recall that the defense attempts to distinguish malicious
and innocent activity using the classifier orient sign(wTx)).
The attacker attempts to circumvent the defense by transform-
ing the data through vector a|F|, and the defender’s goal is to
counter this attack by appropriately specifying classifier vector
w|F|. The terms ||a||3 and ||w||3 define “regularizations”
imposed on attacker and defender actions, respectively, as dis-
cussed below.

Observe that (5) models the attacker as acting to increase
the misclassification rate with vector a, subject to the need to
limit the magnitude of this vector (large a is penalized via the
term ||a||3). This model thus captures in a simple way the fact
that the actions of the attacker are in reality always constrained
by the goals of the attack. For instance, in the case of Spam
email attacks, the Spammer tries to manipulate message x in
such a way that it “looks like” legitimate email and evades the
Spam filter w. However, transformed message xa must still
communicate the desired information to the recipient or the
attacker’s goal will not be realized, and so the transformation
vector a cannot be chosen arbitrarily.

The defender attempts to reduce the misclassification rate
with an optimal choice for vector w, and avoids “over-fitting”
through regularization with the ||w||3 term [3]. Notice that the
formulation (5) permits the attacker’s goal to be modeled as
counter to, but not exactly the opposite of, the defender’s goal,
and this is consistent with many real-world settings. Returning
to the Spam example, the Spammer’s objective of delivering
messages which induce profitable user responses is not the
inverse of an email service provider’s goal of achieving high
Spam recognition with a very low false-positive rate.

The preceding development can be summarized by stating
the following predictive defense (PD) algorithm:

Algorithm PD

1. Collect historical data {yi, xi}
n
i=1 which reflects past be-

havior of the attacker and past legitimate behavior.

2. Optimize objective function (5) to obtain the predicted
actions a|F| of the attacker and the optimal defense
w|F| to counter this attack.

3. Estimate the status of any new activity x as either mali-
cious (1) or innocent (1) via orient sign(wTx).

Observe that Step 2 of this algorithm can be interpreted as first
predicting the attacker strategy through computation of attack
vector a, and then learning an appropriate countermeasure w by
applying ML to the “transformed” data {yi, xia}n

i=1.

D. Spam Case Study

This case study examines the performance of Algorithm PD for
the Spam filtering problem. We use the Spam/non-Spam email
dataset introduced above, consisting of ~128,000 messages that
were sent during the period 1999-2006. The study compares
the effectiveness of Algorithm PD, implemented as a Spam
filter, with that of a well-tuned naïve Bayes (NB) Spam filter
[21]. Because NB filters are widely used and work very well in
Spam applications, this filter is referred to as the gold-standard
algorithm. We extract from our dataset the 1000 oldest legiti-
mate emails and 1000 oldest Spam messages for use in training
both Algorithm PD and the gold-standard algorithm. The email
messages sent during the four year period immediately follow-
ing the date of the last training email are used as test data. More
specifically, these emails are binned by quarter and then ran-
domly sub-sampled to create balanced datasets of Spam and
legitimate emails for each of the 16 quarters in the test period.

Recall that Algorithm PD employs aggressive feature space
dimension reduction to manage the complexity of the game-
based modeling process. This dimension reduction is accom-
plished here through SVD analysis, which reduces the dimen-
sion |F| of feature vectors from ~250K to 20) [3]. (The or-
thogonal basis used for this reduction is derived by performing
SVD analysis using the 1000 non-Spam and 1000 Spam train-
ing data.) We remark that good classification accuracy can be
obtained with a wide range of (reduced) feature space dimen-
sions. For example, a Spam filter accuracy of ~97% is achieved
with the training data when using an NB classifier implemented
with a feature space dimension ranging from |F|100,000 to |F|
5 (accuracy is estimated via two-fold cross-validation).

The gold-standard strategy is applied as described in [21].
Algorithm PD is implemented with parameter values 0.001
and 0.1, and with a sum-of-squares loss function. As dis-
cussed above, motivations for developing predictive defenses
include the capability to perform well against new attacks and
the possibility to maintain an effective defense without the
need for frequent retraining, which is ordinarily expensive and
time-consuming. To explore these issues, in this case study we
train Algorithm PD and the gold-standard algorithm once, us-
ing the 1000 legitimate/1000 Spam dataset, and then apply the
filters without retraining on the first four years of emails that
follow these 2000 emails.

Sample results from this study are depicted in Figure 10.
Each data point in the plots represents the average accuracy
over ten trials (two-fold cross-validation). It can be seen that
the filter based upon Algorithm PD significantly outperforms
the gold-standard method: the predictive defense experiences
almost no degradation in filtering accuracy over the four years
of the study, while the gold-standard method suffers a substan-
tial drop in accuracy during this period. These results suggest
that the combination of ML and game theory-based adversary
model offers an effective means of defending against new at-
tacks. Additionally, the results indicate that predictive defense
permits good performance to be realized with much less re-
training than is usually required.

E. Randomized Feature Learning

An important consideration when applying ML techniques in
adversarial settings is the extent to which adversaries can “re-
verse-engineer” the learning algorithm and use these insights to
circumvent the classifier. One way to increase the difficulty of
the adversary’s reverse engineering task is to employ “random-
ized feature” learning [47]. Here we explore in a preliminary
way the following three-step implementation of this idea: 1.)
divide the set of available features into randomly-selected, pos-
sibly overlapping subsets; 2.) train one classifier for each sub-
set of features; and 3.) alternate between classifiers in a random
fashion during operation. The fact that good classifier perform-
ance is often obtainable with only a few features (see the Spam
example above) suggests the feasibility of employing multiple
small subsets of randomly-selected features in a classifier.

To test the effectiveness of this strategy, we use a variant of
the optimization process specified in (1). More specifically, we
first use training data {yi, xi}

n
i=1 to computed the classifier vec-

tor w in two ways: 1.) using the full set of (reduced-dimension)
features F, 2.) using two subsets of features randomly selected
from set F; the resulting classifier vectors are denoted wF and

{wF1, wF2}. (1) is then employed to compute the optimal attack
against classifier vector wF, denoted aF, and to compute the
optimal attack for the defense consisting of randomly alternat-
ing classifiers wF1 and wF2, designated aF12.

Applying this evaluation process to the 2000 email training
dataset described in Section IVD suggests randomized feature
leaning may be an effective way to reduce the efficacy of ad-
versary reverse engineering methods. We define F to be the set
of 20 features with largest singular values, and build sets F1
and F2 by randomly sampling F (with replacement) until each
subset contains 10 features. The classification accuracy of wF
against nominal data (i.e., with a0) is superior to that provided
by a classifier which randomly alternates between classifiers
wF1 and wF2, but the difference is modest – the accuracies are
98.4% and 96.2%, respectively, for wF and {wF1,wF2} (two-fold
cross-validation). Crucially, however, the randomized feature
classifier is substantially more robust against attack data (i.e.,
data for aaF or aaF12). Indeed, the accuracy of classifier wF is
only 66.1% against attack data, while the accuracy of random-
ized feature classifier {wF1,wF2} drops less than 10%, to 86.8%,
in this setting (two-fold cross-validation). Figure 11 summa-
rizes these results.

V. SUMMARY

This paper proposes that predictive analysis techniques can be
improved by leveraging sociological models, and explores this
possibility by considering three challenging prediction tasks:
1.) inferring the signs (friendly or antagonistic) of ties in social
networks, 2.) predicting whether an emerging social diffusion
event will propagate widely or quickly dissipate, and 3.) an-
ticipating and defending future actions of opponents in adver-
sarial settings. In each case, we derive a novel machine learn-
ing-based prediction algorithm which incorporates a socio-
logical model in its development and show that the new algo-
rithm outperforms a “gold-standard” method in empirical tests.
Taken together, the collection of results presented in this paper

Figure 10. Results for Spam filtering case study. The plot
shows how filter accuracy (vertical axis) varies with time
(horizontal axis) for the gold-standard classifier (red) and
Algorithm PD (blue).

Figure 11. Results for randomized feature learning case
study. Bar charts show Spam-non-Spam classification
accuracy for classifiers wF (left bars) and {wF1, wF2}
(right bars) for nominal Spam (blue) and “attack” Spam
(red) (two-fold cross-validation).

optimal
learning

randomized feature
learning

optimal
learning

randomized feature
learning

indicate that incorporating simple models from sociology can
substantially improve the performance of prediction methods,
particularly in applications in which there is only limited data
available for training and implementing the algorithms.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Defense,
The Boeing Company, and the Laboratory Directed Research
and Development Program at Sandia National Laboratories.
We thank Chip Willard of the U.S. Department of Defense,
Curtis Johnson and Travis Bauer of Sandia National Laborato-
ries, and Anne Kao of Boeing for numerous helpful discussions
on aspects of this research.

REFERENCES
[1] Colbaugh, R. and K. Glass, “Predictive analysis for social

processes I: Multi-scale hybrid system modeling, and II:
Predictability and warning analysis”, Proc. 2009 IEEE Multi-
Conference on Systems and Control, Saint Petersburg, Russia,
July 2009.

[2] Choi, H. and H. Varian, “Predicting the present with Google
Trends”, SSRN Preprint, April 2009.

[3] Hastie, T., R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Second Edition, Springer, New York, 2009.

[4] Colbaugh, R., K. Glass, and P. Ormerod, “Predictability of
‘unpredictable’ cultural markets”, 105th Annual Meeting of the
American Sociological Association, Atlanta, GA, August 2010.

[5] Asur, S. and B. Huberman, “Predicting the future with social
media”, Proc. IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, Toronto,
Ontario, Canada, September 2010.

[6] Goel, S., J. Hofman, S. Lahaie, D. Pennock, and D. Watts,
“Predicting consumer behavior with Web search”, Proc.
National Academy of Sciences USA, Vol. 107, pp. 17486-17490,
2010.

[7] Lerman, K. and T. Hogg, “Using stochastic models to describe
and predict social dynamics of Web users”, arXiv preprint,
October 2010.

[8] Bollen, J., H. Mao, and X. Zeng, “Twitter mood predicts the
stock market”, J. Computational Science, Vol. 2, pp. 1-8, 2011.

[9] Colbaugh, R. and K. Glass, “Detecting emerging topics and
trends via predictive analysis of ‘meme’ dynamics”, Proc. 2011
AAAI Spring Symposium Series, Palo Alto, CA, March 2011.

[10] Lui, C., P. Metaxas, and E. Mustafaraj, “On the predictability of
the U.S. elections through search volume activity”, Proc. IADIS
e-Society Conference, Avila, Spain, March 2011.

[11] Guman, G., “Internet search behavior as economic forecasting
tool: The case of inflation expectations”, J. Economic and Social
Measurement, Vol. 36, pp. 119-167, 2011.

[12] Amodea, G., R. Blanco, and U. Brefeld, “Hybrid models for
future event prediction”, Proc. CIKM ’11, Glasgow, Scotland,
October 2011.

[13] Colbaugh, R. and K. Glass, “Early warning analysis for social
diffusion events”, Security Informatics, Vol. 2, 2012, in press.

[14] Clauset, A., C. Moore, and M. Newman, “Hierarchical structure
and the prediction of missing links in networks”, Nature, Vol.
453, pp. 98-101, 2008.

[15] Pang, B. and L. Lee, “Opinion mining and sentiment analysis”,
Foundations and Trends in Information Retrieval, Vol. 2 , pp. 1-
135, 2008.

[16] Abbasi, A., H. Chen, and A. Salem, “Sentiment analysis in
multiple languages: Feature selection for opinion classification
in Web forums”, ACM Transactions on Information Systems,
Vol. 26, pp. 1-34, 2008.

[17] Lampos, V., T. De Bie, and N. Cristianini, “Flu detector –
Tracking epidemics on Twitter, ECML PKDD 2010, Springer
LNAI 6323, 2010.

[18] Christakis, N. and J. Fowler, “Social network sensors for early
detection of contagious outbreaks”, PLoS ONE, Vol. 5, e12948,
2010.

[19] Ayers, J., K. Ribisi, and J. Brownstein, “Tracking the rise in
popularity of electronic nicotine delivery systems using search
query surveillance”, American J. Preventative Medicine, Vol.
41, pp. 1-6, 2011.

[20] Glass, K. and R. Colbaugh, “Estimating the sentiment of social
media content for security informatics applications”, Security
Informatics, Vol. 1, No. 3, pp. 1-16, 2012.

[21] Colbaugh, R. and K. Glass, “Proactive defense for evolving
cyber threats”, Proc. 2011 IEEE International Conference on
Intelligence and Security Informatics, Beijing, China, July 2011.

[22] Colbaugh, R., “Arctic ice, George Clooney, lipstick on a pig,
and insomniac fruit flies: Combining kd and m&s for predictive
analysis”, Proc. ACM KDD ’11, San Diego, CA, August 2011.

[23] Heider, F., “Attitude and cognitive organization”, J. Psychology,
Vol. 21, pp. 107-112, 1946.

[24] Cartwright, D. and F. Harary, “Structural balance: A
generalization of Heider’s theory”, Psychological Review, Vol.
63, pp. 277-293, 1956.

[25] Leskovec, J., D. Huttenlocher, and J. Kleinberg, “Predicting
positive and negative links in online social networks”, Proc
WWW 2010, Raleigh, NC, April 2010.

[26] Centola, D., “The spread of behavior in an online social network
experiment”, Science, Vol. 329, pp. 1194-1197, 2010.

[27] Romero, D., B. Meeder, and J. Kleinberg, “Differences in the
mechanics of information diffusion across topics: Idioms,
political hashtags, and complex contagion on Twitter”, Proc
WWW 2011, Hyderabad, India, March 2011.

[28] Leskovec, J., L. Backstrom, and J. Kleinberg, “Meme-tracking
and the dynamics of the news cycle”, Proc. ACM KDD ‘09,
Paris, France, June 2009.

[29] von Neumann, J. and O. Morgenstern, Theory of Games and
Economic Behavior, Princeton University Press, 1944.

[30] Swedberg, R., “Sociology and game theory: Contemporary and
historic perspectives”, Theory and Society, Vol. 30, pp. 301-335,
2001.

[31] Maniu, S., B. Cautis, and T. Abdessalem, “Building a signed
network from interactions in Wikipedia”, Proc. DBsocial ’11,
Athens, Greece, June 2011.

[32] Marvel, S., J. Kleinberg, R. Kleinberg, and S. Strogatz,
“Continuous-time model of structural balance”, Proc. National
Academy of Sciences USA, Vol. 108, pp. 1771-1776, 2011.

[33] Axelrod, R. and D. Bennett, “Landscape theory of aggregation”,
British J. Political Science, Vol. 23, pp. 211-233, 1993.

[34] Zachary, W., “Information flow model for conflict and fission”,
J. Anthropological Research, Vol. 33, pp. 452-473, 1977.

[35] Newman, M., “Modularity and community structure in
networks”, Proc. National Academy of Sciences USA, Vol. 103,
pp. 8577-8582, 2006.

[36] Carmi, S., S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A
model of Internet topology using the k-shell decomposition”,
Proc. National Academy of Sciences USA, Vol. 104, pp. 11150-
11154, 2007.

[37] http://www.sandia.gov/avatar/, accessed July 2010.
[38] Glass, K. and R. Colbaugh, “Web analytics for security

informatics”, Proc. IEEE European Intelligence and Security
Informatics Conference, Athens, Greece, September 2011.

[39] http://memetracker.org, accessed January 2010.
[40] Bradley, M. and P. Lang, “Affective norms for English words

(ANEW): Stimuli, instruction manual, and affective ratings”,
Technical Report C1, University of Florida, 1999.

[41] Ramakrishnan, G., A. Jadhav, A. Joshi, S. Chakrabarti, and P.
Bhattacharyya, “Question answering via Bayesian inference on
lexical relations”, Proc. Annual Meeting of the Association for
Computational Linguistics, Sapporo, Japan, July 2003.

[42] http://data.ris.ripe.net/, last accessed July 2011.
[43] Glass, K., R. Colbaugh, and M. Planck, “Automatically

identifying the sources of large Internet events”, Proc. IEEE
International Conference on Intelligence and Security
Informatics, Vancouver, Canada, May 2010.

[44] Bozorgi, M., L. Saul, S. Savage, and G. Voelker, “Beyond
heuristics: Learning to classify vulnerabilities and predict
exploits”, Proc. ACM KDD ‘10, Washington DC, July 2010.

[45] Colbaugh, R. and K. Glass, “Predictive defense against evolving
adversaries”, SAND Report, Sandia National Laboratories,
December 2011.

[46] Sato, Y., E. Akiyama, and J.D. Farmer, “Chaos in learning a
simple two-person game”, Proc. National Academy of Sciences
USA, Vol. 99, pp. 4748-4751, 2002.

[47] Johnson, C., Personal communication, December 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

