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Abstract 
Detecting and characterizing emerging topics of discussion 
and consumer trends through analysis of Internet data is of 
great interest to businesses. This paper considers the prob-
lem of monitoring the Web to spot emerging memes – dis-
tinctive phrases which act as “tracers” for topics – as a 
means of early detection of new topics and trends. We pre-
sent a novel methodology for predicting which memes will 
propagate widely, appearing in hundreds or thousands of 
blog posts, and which will not, thereby enabling discovery 
of significant topics. We begin by identifying measurables 
which should be predictive of meme success. Interestingly, 
these metrics are not those traditionally used for such pre-
diction but instead are subtle measures of meme dynamics. 
These metrics form the basis for learning a classifier which 
predicts, for a given meme, whether or not it will propagate 
widely. The utility of the prediction methodology is demon-
strated through analysis of a sample of 200 memes which 
emerged online during the second half of 2008.  

1. Introduction   

The enormous popularity of “social media”, such as blogs, 
forums, and social networking sites, represents a signifi-
cant challenge to standard business models and practices, 
as these media move the control of information from com-
panies to consumers [e.g. 1-5]. However, social media also 
offer an unprecedented opportunity to increase business 
responsiveness and agility. For example, recent surveys 
reveal that 32% of the nearly 250 million bloggers world-
wide regularly give opinions on products and brands, 71% 
of active Internet users read blogs, and 70% of consumers 
trust opinions posted online by other consumers [6,7]. Thus 
social media is a vast source of business-relevant opinions. 
Moreover, this information has a reach that rivals any tra-
ditional media and an influence which substantially ex-
ceeds standard advertising channels.  

Businesses are therefore strongly motivated to pay atten-
tion to social media and other online information sources. 
For instance, it is crucially important for companies to be 
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able to detect emerging topics of discussion and consumer 
trends as soon as possible. Customer complaints and other 
negative information are much easier to address if discov-
ered quickly, while early positive “buzz” can be leveraged 
and amplified. Identifying nascent consumer interest in 
subjects and trends which are relevant to company business 
can be of great strategic advantage. Indeed, the relevance 
and timeliness of the information available in social media 
has the potential to revolutionize the way business is con-
ducted in many sectors.  

A central challenge in leveraging the information present 
in social media is the enormous scale of the problem. The 
data of interest to a particular business are buried in the 
vast, and largely irrelevant, output of millions of bloggers 
and other online content producers. Consequently, effec-
tively exploiting these data requires development of new, 
automated methods of analysis [1-5].  

This paper considers the problem of detecting and charac-
terizing emerging topics and trends in social media. Auto-
mated topic discovery is of great interest in research fields 
ranging from business to computer science and application 
domains such as marketing, finance, human health, and 
national security; see, e.g., [1-3] for business-oriented re-
views. Recently [8] proposed that monitoring social media 
to spot emerging memes – distinctive phrases which propa-
gate relatively unchanged online and act as “tracers” for 
discrete cultural units – can enable early discovery of new 
topics and trends. These researchers present an elegant 
solution to the meme detection problem and show that their 
algorithm is efficient enough to allow Web-scale analysis. 
However, a challenge with the meme-tracking method de-
veloped in [8] is the fact that the vast majority of online 
memes attract little attention before fading into obscurity. 
In contrast, in most business applications we are interested 
in those memes, and the underlying topics, that reach a 
nontrivial fraction of the population.  

This consideration motivates our interest in predictive 
analysis of meme dynamics: we wish to identify those 
memes which will go on to attract substantial attention, and 
to do so early in the meme lifecycle. This capability is es-
sential for practical emerging topic discovery, as it would 
enable early detection of the emergence of significant top-



ics and trends. Standard approaches to predictive analysis 
of social diffusion phenomena like meme propagation as-
sume, either explicitly or implicitly, that diffusion events 
which “go viral” are inherently different from those that 
don’t, and focus attention on trying to identify these crucial 
differences (see [9,10] for background on social diffusion). 
Recent research calls into question this intuitively plausible 
premise and, indeed, indicates that intuition can be an un-
reliable guide to identifying successful prediction methods. 
For example, the studies reported in [11-14] indicate that 
the “intrinsic” attributes commonly believed to be impor-
tant when assessing the likelihood of adoption of cultural 
products, such as the quality of the product itself, do not 
possess much predictive power. This research offers evi-
dence that, when individuals are influenced by the actions 
of others, it may not be possible to obtain reliable predic-
tions using methods which focus on intrinsics alone; in-
stead, it may be necessary to incorporate aspects of social 
influence into the prediction process.  

Recognizing this challenge, this paper proposes that gener-
ating useful predictions about social dynamics requires 
careful consideration of the way individuals influence one 
another through their social networks. We present a power-
ful new methodology for predictive analysis of social dif-
fusion which exploits information about network topology 
and dynamics to accurately forecast which memes will 
propagate widely, appearing in hundreds or thousands of 
blog posts, and which will not. The particular network fea-
tures used by the prediction algorithm are those identified 
as likely to be predictive of meme success by our recently 
proposed predictability assessment method [11]. Interest-
ingly, the metrics nominated by this theoretical analysis as 
the ones expected to possess significant predictive power 
turn out to be fairly subtle measures of the network dynam-
ics associated with early meme diffusion. Meme prediction 
is accomplished by learning an algorithm which, based 
upon very early network dynamics, is able to successfully 
identify which memes will ultimately propagate widely 
and which will not.  

The paper makes three main contributions. First, we pro-
pose a set of novel network dynamics-based metrics which 
possess significant predictive power for social diffusion 
processes like meme propagation; indeed, these metrics are 
found to be considerably more predictive than standard 
measures. Second, we develop a machine learning-based 
classification algorithm which employs these network dy-
namics metrics to accurately predict, very early in the life-
cycle of a meme of interest, whether that meme will dif-
fuse widely or not. Third, the utility of the prediction algo-
rithm, and the power of network-based predictive metrics, 
are demonstrated through an empirical study involving 
“successful” and “unsuccessful” memes associated with 
topics of discussion that emerged in social media during 
the second half of 2008. Perhaps surprisingly, we find that 
although memes typically propagate for weeks, useful pre-
dictions can be made within the first twelve hours after a 
meme is detected.  

2. Problem Formulation 

This section begins by defining the class of memes of in-
terest and providing a more precise statement of the meme 
prediction problem. We then introduce the datasets we use 
to investigate meme prediction and briefly characterize 
relevant attributes of the dynamics of meme propagation.  

The goal of this paper is to develop a methodology for un-
derstanding and predicting the way memes – distinctive 
phrases which act as “tracers” for topics – diffuse through 
online news and social media. We focus on phrases which 
1.) appear in online sources as quoted material, and 2.) 
propagate largely unchanged through sequences of news 
articles and blog posts. Our main source of data on meme 
dynamics is the publicly available datasets archived at 
http://memetracker.org [15] by the authors of [8]. Briefly, 
the study [8] develops an efficient and elegant algorithm 
for meme detection and applies the algorithm to data ob-
tained from Spinn3r (http://spinn3r.com). The raw Spinn3r 
data used in [8] consist of all news articles and blog posts 
published on the approximately 20 000 news sites and 1.6 
million blogs indexed by Spinn3r during the period 1 Au-
gust to 31 December 2008. Application of the meme detec-
tion method proposed in [8] to the Spinn3r data resulted in 
the extraction of over 112 million phrases, and a significant 
portion of these data have been made available at [15].  

We are interested in developing capabilities to perform two 
main operations: 1.) efficient meme monitoring, which 
involves the identification of a few good “sensor blogs” 
through which to observe the emergence and evolution of 
memes, and 2.) meme prediction, the goal of which is to 
distinguish successful and unsuccessful memes early in 
their lifecycle. More precisely, we have the following two 
predictive analysis problems:  

 Monitoring: 1.) investigate whether there exist good sen-
sor blogs for memes, that is, a small number of blogs 
that consistently detect successful memes early; if so, 2.) 
characterize these sensor blogs and employ them to in-
crease the efficiency and effectiveness of the meme de-
tection method of [8].  

 Prediction: 1.) identify measurables which are predictive 
of meme success (e.g., post sentiment, early meme dy-
namics), and 2.) use these predictive measurables as the 
basis for classifying memes into two groups – those 
which will ultimately be successful (here, acquire 1000 
posts) and those that will be unsuccessful (attract 100 
posts) – very early in the meme lifecycle.  

To support an empirical evaluation of our proposed solu-
tions to the above problems, we downloaded from [15] the 
time series data for slightly more than 70 000 memes. 
These data contain, for each meme M, a sequence of pairs 
(t1, URL1)M, (t2, URL2)M, …, (tT, URLT)M, where tk is the 
time of appearance of the kth blog post or news article that 
contains at least one mention of meme M, URLk is the 
URL of the blog or news site on which that post/article was 
published, and T is the total number of posts that mention 



meme M. From this set of time series we randomly se-
lected 100 “successful” meme trajectories, defined as those 
corresponding to memes which attracted at least 1000 posts 
during their lifetimes, and 100 “unsuccessful” meme tra-
jectories, defined as those whose memes acquired no more 
than 100 total posts. It is worth noting that, in assembling 
the data in [15], all memes which received fewer than 15 
total posts were deleted, and that ~50% of the remaining 
memes have 50 posts; thus the large majority of memes 
are unsuccessful by our definition (as well as according to 
the criteria of most business intelligence applications [1-
5]). Figure 1 depicts the distribution of meme success for 
the full set of ~70 000 memes obtained from [15].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Two other forms of data were collected for this study: 1.) a 
large Web graph which includes websites (URLs) that ap-
pear in the meme time series, and 2.) samples of the text 
surrounding the memes in the posts which contain them. 
More specifically, we sampled the URLs appearing in the 
time series for our set of 200 successful and unsuccessful 
memes and performed a Web crawl that employed these 
URLs as “seeds”. This procedure generated a Web graph, 
denoted Gweb, that consists of approximately 550 000 verti-
ces/websites and 1.4 million edges/hyperlinks, and in-
cludes essentially all of the websites which appear in the 
meme time series. To obtain samples of text surrounding 
memes in posts, we randomly selected ten posts for each 
meme and then extracted from each post the paragraph 
which contains the first mention of the meme. 

Meme dynamics possesses several characteristics which 
are likely to make predictive analysis challenging. For ex-
ample, as shown in Figure 1, the distribution for meme 
success is strongly right-skewed, with most memes receiv-
ing relatively little attention and a few attracting consider-

able interest. This property may be a reflection of the role 
of social influence in meme dynamics: individuals and 
organizations become aware of memes and judge their ap-
peal in part by observing others, and as a consequence suc-
cessful memes may attract attention not because they are 
particularly interesting but instead simply because they’ve 
attracted attention in the past [e.g., 12,14]. It is known that 
predicting the evolution of such “rich get richer” phenom-
ena using standard methods is quite difficult [11-14].  

Memes also exhibit highly variable times to acquire their 
first few posts and to accumulate their final tally of posts. 
Figure 2 reports the mean and median times required for 
successful and unsuccessful memes to attract five, ten, and 
their total number of posts. It is interesting to note that the 
median times for unsuccessful memes to attract early posts 
is actually shorter than the corresponding times for suc-
cessful memes. This figure also provides an illustration, 
taken from [8], of the evolution of several successful 
memes. It can be seen that some of these memes receive 
their posts quickly while others become prominent only 
after substantial time has elapsed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Cumulative distribution of meme success. The 
log-log plot shows the number of memes (vertical axis) 
which acquired at least a given number of posts (hori-
zontal axis) during their lifetimes.  

Figure 2. Meme dynamics. In the “stacked” plot at top, thread 
thickness corresponds to number of posts/articles mentioning 
the particular meme during that time period (horizontal axis) 
[8]. The table at bottom reports the mean and median time (in 
hours) required for successful and unsuccessful memes to 
acquire five posts, ten posts, and their total number of posts. 

Early Meme Dynamics
Successful Memes (1000 posts)

#posts mean (hr) median (hr) 
5                  108                     18.5 

10                 171                     41.5
total           ~4400                ~4400 

Unsuccessful Memes (100 posts) 

#posts mean (hr) median (hr) 
5                  375                     10.1 

10                 765                     30.5
total           ~1010                  ~410



3   Predictive Analysis 

In this section we begin by summarizing the application of 
the predictability assessment process [11,12] to a simple 
model of meme diffusion. This procedure identifies two 
features of the network dynamics which should be useful 
for distinguishing successful and unsuccessful memes early 
in their lifecycle. We then consider the meme monitoring 
problem, in which the objective is to identify and charac-
terize blogs and other online sources that consistently de-
tect successful memes early in their lifecycles. Discovering 
such news sources would enable more efficient Web moni-
toring and is thus of considerable direct interest. These 
sources may also be useful for meme prediction, as the 
appearance of a meme on one or more of these sites may 
be an exploitable early indicator of meme success. Finally 
we address meme prediction, and develop a machine learn-
ing-based classification algorithm which employs our new 
network dynamics metrics to accurately predict, very early 
in a meme’s lifecycle, whether that meme will propagate 
widely or not. The performance of the prediction algorithm 
is illustrated through an empirical study involving success-
ful and unsuccessful memes associated with topics of dis-
cussion that emerged in social media during 2008.  

3.1   Predictability assessment  
Here we briefly summarize the results of applying the pre-
dictability assessment procedure [11,12] to the task of 
identifying measurables which should be predictive of 
meme success. The discussion begins with brief, intuitive 
reviews of the predictability assessment process and a gen-
eral framework for modeling social diffusion, and then 
describes the results of applying this analytic procedure to 
meme dynamics. Readers interested in a comprehensive 
mathematical presentation of predictability assessment and 
social diffusion modeling are referred to [11,12]. 

Predictability. Consider a simple model of information 
diffusion, in which individuals combine their own beliefs 
and opinions regarding a new piece of information with 
their observations of the actions of others to arrive at their 
decisions about whether to pass along the information. In 
such situations it can be quite difficult to determine which 
characteristics of the diffusion process, if any, are predic-
tive of things like the speed or ultimate reach of the diffu-
sion [9-12]. In [11,12] we propose a mathematically rigor-
ous approach to predictability assessment which, among 
other things, permits identification of features of social 
dynamics which should have predictive power; we now 
summarize this assessment methodology.  

The basic idea behind the proposed approach to predict-
ability analysis is simple and natural: we assess predictabil-
ity by answering questions about the reachability of diffu-
sion events. To obtain a mathematical formulation of this 
strategy, the behavior about which predictions are to be 
made is used to define the system state space subsets of 
interest (SSI), while the particular set of candidate measur-
ables under consideration allows identification of the can-

didate starting set (CSS), that is, the set of states and sys-
tem parameter values which represent initializations that 
are consistent with, and equivalent under, the presumed 
observational capability. As a simple example, consider an 
online market with two products, A and B, and suppose the 
system state variables consist of the current market share 
for A, ms(A), and the rate of change of this market share, 
r(A) (ms(B) and r(B) are not independent state variables 
because ms(A)  ms(B)  1 and r(A)  r(B)  0); let the 
parameters be the advertising budgets for the products, 
bud(A) and bud(B). The producer of item A might find it 
useful to define the SSI to reflect market share dominance 
by A, that is, the subset of the two-dimensional state space 
where ms(A) exceeds a specified threshold (and r(A) can 
take any value). If only market share and advertising budg-
ets can be measured then the CSS is the one-dimensional 
subset of state-parameter space consisting of the initial 
magnitudes for ms(A), bud(A), and bud(B), with r(A) un-
specified (the one-dimensional “uncertainty” in the CSS 
reflects the fact that r(A) is not measurable).  

Roughly speaking, the approach to predictability assess-
ment proposed in [11,12] involves determining how prob-
able it is to reach the SSI from a CSS and deciding if these 
reachability properties are compatible with the prediction 
goals. If a system’s reachability characteristics are incom-
patible with the given prediction question – if, say, “hit” 
and “flop” states in the online market example are both 
fairly likely to be reached from the CSS – then the situa-
tion is deemed unpredictable. This setup permits the identi-
fication of candidate predictive measurables: these are the 
measurable states and/or parameters for which predictabil-
ity is most sensitive [11,12]. Continuing with the online 
market example, if trajectories with positive early market 
share rates r(A) are much more likely to yield market share 
dominance for A than are trajectories with negative early 
r(A), then the situation is unpredictable (because the out-
come depends sensitively on r(A) and this quantity is not 
measured). Moreover, this analysis suggests that market 
share rate is likely to possess predictive power, so it may 
be possible to increase predictability by adding the capac-
ity to measure this quantity.  

Model. In social diffusion, people are affected by what 
others do. This is easy to visualize in the case of disease 
transmission, with infections being passed from person to 
person. Information, such as that in the topics of discussion 
underlying memes, can also propagate through a popula-
tion, as individuals become aware of information and per-
suaded of its relevance through their social and information 
networks. The dynamics of information diffusion can 
therefore depend upon the topological features of the perti-
nent networks, for instance the presence of highly con-
nected blogs in a social media network (see, e.g., [10]). 
This dependence suggests that, in order to understand the 
predictability of social diffusion phenomena and in particu-
lar to identify features which possess predictive power, it is 
necessary to assess predictability using social and informa-
tion network models with realistic topologies.  



Specifically, the social diffusion models examined in this 
study possess networks with four topological properties 
that are ubiquitous in real-world social and information 
networks and which have the potential to impact diffusion 
dynamics:  

 right-skewed degree distribution – the property that most 
vertices have only a few network neighbors while a few 
vertices have a great many neighbors;  

 transitivity – the property that the network neighbors of a 
given vertex have a heightened probability of being con-
nected to one another;  

 community structure – the presence of densely connected 
groupings of vertices which have only relatively few 
links to other groups;  

 core-periphery structure – the presence of a small group 
of “core” vertices which are densely connected to each 
other and are also close to the other vertices in the net-
work.  

It is shown in [11] that stochastic hybrid dynamical sys-
tems (S-HDS) provide a powerful mathematical formalism 
with which to represent social diffusion on realistic net-
works. An S-HDS is a feedback interconnection of a dis-
crete-state stochastic process, such as a Markov chain, with 
a family of continuous-state stochastic dynamical systems 
[11]. Combining discrete and continuous dynamics within 
a unified, computationally tractable framework offers an 
expressive, scalable modeling environment that is amena-
ble to formal analysis. In particular, S-HDS models can be 
used to efficiently represent social diffusion on large-scale 
networks with right-skewed degree distributions, transitiv-
ity, community structure, and core-periphery structure 
[11,16].  

As an intuitive illustration of the way S-HDS enable effec-
tive, tractable modeling of complex network phenomena, 
consider the task of modeling diffusion on a network that 
possesses community structure. As shown in Figure 3, this 
diffusion consists of two components: 1.) intra-community 
dynamics, involving frequent interactions between indi-
viduals within the same community and the resulting grad-
ual change in the concentrations of “infected” (red) indi-
viduals, and 2.) inter-community dynamics, in which the 
“infection” jumps from one community to another, for in-
stance because an infected individual “visits” a new com-
munity. S-HDS models offer a natural framework for rep-
resenting these dynamics, with the S-HDS continuous sys-
tem modeling the intra-community dynamics (e.g., via 
stochastic differential equations), the discrete system cap-
turing the inter-community dynamics (e.g., using a Markov 
chain), and the interplay between these dynamics being 
represented by the S-HDS feedback structure. A detailed 
description of the manner in which S-HDS models can be 
used to capture information dynamics on networks that 
possess each of the topological structures of interest, and 
their combinations, is given in [16].  

Results. We have applied the predictability assessment 
methodology summarized above to the meme prediction 
problem, and we now summarize the main conclusions of 
this study; a more complete discussion of this investigation 
is given in [16]. The analysis uses the mathematically rig-
orous predictability assessment procedure summarized 
above, in combination with empirically-grounded S-HDS 
models for social dynamics, to characterize the predictabil-
ity of social diffusion on networks with realistic degree 
distributions, transitivity, community structure, and core-
periphery structure. The main finding of the study, from 
the perspective of this paper, is a demonstration that pre-
dictability of these diffusion models depends crucially 
upon social and information network topology, and in par-
ticular on a network’s community and core-periphery 
structures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to describe these theoretical results more quantita-
tively and leverage them for prediction, it is necessary to 
specify mathematical definitions for network communities 

Figure 3. Modeling diffusion on networks with community 
structure via S-HDS. The cartoon at top left depicts a net-
work with three communities. The cartoon at bottom illus-
trates diffusion within a community k and between com-
munities i and j. The schematic at top right shows the basic 
S-HDS feedback structure; the discrete and continuous 
systems in this framework model the inter-community and 
intra-community diffusion dynamics, respectively.   
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and core-periphery structure. Community structure is wide-
ly recognized to be important in real-world networks, and 
there exists a range of qualitative and quantitative defini-
tions for this concept. Here we adopt the modularity-based 
definition proposed in [17], whereby a good partitioning of 
a network’s vertices into communities is one for which the 
number of edges between putative communities is smaller 
than would be expected in a random partitioning. To be 
concrete, a modularity-based partitioning of a network into 
two communities maximizes the modularity Q, defined as  

Q  sT B s / 4m, 

where m is the total number of edges in the network, the 
partition is specified with the elements of vector s by set-
ting si  1 if vertex i belongs to community 1 and si  1 if 
it belongs to community 2, and the matrix B has elements 
Bij  Aij  kikj / 2m, with Aij and ki denoting the network 
adjacency matrix and degree of vertex i, respectively. Par-
titions of the network into more than two communities can 
be constructed recursively [17]. Note that modularity-
based community partitions can be efficiently computed 
for large social networks and effectively implemented even 
with incomplete network topology data [16].  

With this definition in hand, we are in a position to present 
the first candidate predictive feature nominated by the 
theoretical predictability assessment [16]: early dispersion 
of a diffusion process across network communities should 
be a reliable predictor that the ultimate reach of the diffu-
sion will be significant. In particular, this measure should 
be more predictive than early volume of diffusion activity 
(a fairly standard measure). The basic idea is illustrated in 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analogously to the situation with network communities, 
there exist a wide range of qualitative and quantitative de-
scriptions of the core-periphery structure found in real-
world networks. Here we adopt the characterization of 
network core-periphery which results from k-shell decom-

position, a well-established technique in graph theory 
which is summarized, for instance, in [18]. To partition a 
network into its k-shells, one first removes all vertices with 
degree one, repeating this step if necessary until all remain-
ing vertices have degree two or higher; the removed verti-
ces constitute the 1-shell. Continuing in the same way, all 
vertices with degree two (or less) are recursively removed, 
creating the 2-shell. This process is repeated until all verti-
ces have been assigned to a k-shell, and the shell with the 
highest index, the kmax-shell, is deemed to be the core of 
the network.  

Given this definition, we are in a position to report the sec-
ond candidate predictive feature nominated by the theoreti-
cal predictability assessment [16]: early diffusion activity 
within the network kmax-shell should be a reliable predictor 
that the ultimate reach of the diffusion will be significant. 
In particular, this measure should be more predictive than 
the early volume of diffusion activity. An intuitive illustra-
tion of this result is depicted in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2 Monitoring  
It is of great interest to determine whether there exist blogs 
and other online sources which are “good sensors” for 
emerging topics and memes, that is, are capable of detect-
ing successful memes “early” in their lifecycles. For the 
purposes of this study, “early” is defined to be within the 
first 3% of the total duration of a meme’s lifespan; qualita-
tively similar results are obtained using other definitions 
for early (e.g., first 5% of lifespan, first 3% or 5% of total 
accumulated blog posts). We adopt a very simple approach 
to this problem: we seek blogs which are “better than ran-
dom” at early detection of successful memes. Other ap-
proaches are possible, of course, such as attempting to 
identify the set of blogs which enables optimally fast de-
tection of new memes subject to a fixed “budget” on the 
number of blogs that can be monitored [16]. However, the 
present formulation is useful for understanding the proper-

Figure 4. Early dispersion across communities is predictive. 
The cartoon illustrates the predictive feature associated with 
community structure: social diffusion initiated with five 
“seed” individuals is much more likely to propagate widely 
if these seeds are dispersed across three communities (right) 
rather than concentrated within a single community (left). 
Note that in [16] this result is established for networks of 
realistic scale and not simply for “toy” networks.  

Figure 5. Early diffusion within the core is predictive. The 
cartoon illustrates the predictive feature associated with k-
shell structure: social diffusion initiated with three “seed” 
individuals is much more likely to propagate widely if 
these seeds reside within the network’s core (left) rather 
than at its periphery (right). Note that in [16] this result is 
established for networks of realistic scale and not simply 
for “toy” networks.  



ties and roles of individual blogs, for instance to allow in-
fluential information sources to be determined, and so is 
perhaps of more fundamental interest.  

Consider the following methodology for identifying “better 
than random” sensor blogs:  

1. Assemble a set of 50 successful memes, that is, memes 
which acquire at least 1000 posts during their lifetimes, 
from the set of memes archived at [15]. These memes 
are randomly selected from the set that remains in the 
dataset after removal of the 200 memes described above.  

2. Form the null hypothesis:  

 blogs post on topics of interest, and they are equally 
good at posting early (so each blog may post on any 
topic, and thus mention any meme, but no blog is in-
herently superior at posting early);  

 the probability that blog B will successfully post early 
on a new meme is independent of B’s previous per-
formance on other memes (so Prob{blog has n suc-
cesses} follows a binomial distribution).  

3. Determine whether any blogs are good early sensor (ES) 
blogs, i.e., post early on more of the successful memes 
than would be expected under the null hypothesis.  

4. Characterize the graph-topological properties of any 
such ES blogs.  

Analysis of the time series data for the set of 50 successful 
memes considered here reveals that, of the 1.6 million 
blogs and 20 000 news feeds in the raw Spinn3r data [15], 
approximately 2400 online sources post early for at least 
one meme. Of these sources, only 33 post early at a rate 
which is statistically significantly better than would be 
expected under the null hypothesis (p  0.05). This set of 
ES blogs is listed in Figure 6.  

A few of the sources listed in Figure 6 perform much better 
than random, detecting more than half of the 50 successful 
memes within the first 3% of their lifespan. Interestingly, 
four of the ES blogs are also good at avoiding making 
posts which mention unsuccessful memes. More precisely, 
the four ES blogs shown in bold type in Figure 6 are less 
likely than random (p  0.05) to mention memes which 
attract fewer than 25 total posts. Because these four infor-
mation sources are simultaneously more likely than ran-
dom to mention successful memes early and less likely 
than random to mention unsuccessful memes at any time, it 
is plausible that these sources are influential, and actually 
contribute to the success of memes by mentioning them. It 
is worth noting that knowledge of the identities of ES blogs 
can be used to improve the responsiveness and efficiency 
of the meme detection algorithm proposed in [8] without 
sacrificing meme coverage; a methodology for exploiting 
this fact is described in [16].  

It would be very useful to identify easy-to-measure fea-
tures of ES blogs to enable them to be efficiently and con-
veniently recognized (e.g., to allow discovery of good ear-

ly sensors in a new domain). Simple graph topology meas-
ures, such as in-degree and closeness centrality, are natural 
candidate features and can explain some of the success of 
ES blogs. For instance, blog in-degree is correlated with 
the number of memes detected early by a blog. Unfortu-
nately, though, this relationship is not sufficiently strong to 
be useful in discovering ES blogs.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Recall that our predictability analysis indicates that vertex 
k-core value may be predictive of meme success, which 
suggests the possibility that blogs with high k-core values 
may be good early sensors. Analysis of the Web graph 
Gweb associated with the meme data offers support for this 
hypothesis. In particular, we find:  

 67% of the ES blogs (listed in Figure 6) are located in 
the “core” of Gweb, defined as the top 0.1% of websites in 
the graph as ranked by k-core index value;   

 64% of “strong” ES blogs (those which detect at least 
25% of successful memes early) are located in the 324-
vertex kmax-shell; note that, in comparison, the set of the 
top 324 websites in Gweb as ranked by in-degree contains 
36% of strong ES blogs.   

These results, while preliminary, suggest that k-shell de-
composition provides a useful way to identify blogs and 
other online sources to monitor to enable emerging topics, 
and their associated memes, to be detected early in their 
lifecycles. For example, in the case of the memes investi-
gated here, the kmax-shell represents a small set of websites 
to monitor, is computationally easy to discover, and con-
tains most of the strong ES blogs identified through (much 
more involved) analysis of meme dynamics.  

Figure 6. “Early sensor” blogs and online news sources. 
This set of 33 online sources is unusually good at detect-
ing successful memes early in their lifecycles. The four 
sources in bold type are also unusually good at avoiding 
mention of memes which don’t become successful.  
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3.3 Prediction  
We now turn to the task of developing a machine learning-
based classifier which is capable of accurately predicting, 
very early in the lifecycle of a meme of interest, whether 
that meme will propagate widely. Two types of classifica-
tion algorithm were tested, one simple (standard naïve 
Bayes [19]) and one sophisticated (the Avatar ensembles of 
decision trees algorithm [20]), to allow the robustness of 
the proposed approach to meme prediction to be evaluated. 
While the two classifiers produce qualitatively similar re-
sults, the Avatar algorithm, denoted A-EDT, is substan-
tially more accurate; thus in what follows only the results 
obtained with A-EDT are reported.  

Recall that the task of interest is to learn a classifier which 
takes as input some combination of relevant post content 
and meme dynamics and accurately predicts whether a 
given meme will ultimately be successful (acquire 1000 
posts during its lifetime) or unsuccessful (attract 100 total 
posts). We employ standard ten-fold cross-validation to 
estimate the accuracy of our classifier. More specifically, 
the set of 200 memes (100 successful and 100 unsuccess-
ful) is randomly partitioned into ten subsets of equal size, 
and the A-EDT algorithm is successively “trained” on nine 
of the subsets and “tested” on the held-out subset in such a 
way that each of the ten subsets is used as the test set ex-
actly once.  

A crucial aspect of the analysis is determining which char-
acteristics of memes and their dynamics, if any, possess 
exploitable predictive power. We consider three classes of 
features:  

 language-based measures, such as the sentiment and 
emotion expressed in the text surrounding memes in 
posts;  

 simple dynamics-based metrics, capturing the early vol-
ume of posts mentioning the meme of interest and the 
rate at which this volume is increasing;  

 network dynamics-based features, such as those identi-
fied through the predictability analysis summarized in 
Section 3.1.  

We now describe each of these feature classes. Consider 
first the language-based measures. Each “document” of 
text surrounding a meme in its (sample) posts is repre-
sented by a simple “bag of words” feature vector x|V|, 
where the entries of x are the frequencies with which the 
words in the vocabulary set V appear in the document. The 
sentiment and emotion of a document may be quantified 
very simply through the use of appropriate lexicons. Let 
s|V| denote a lexicon vector, in which each entry of s is 
a numerical “score” quantifying the sentiment/emotion 
intensity of the corresponding word in the vocabulary V. 
The aggregate sentiment/emotion score of document x can 
be computed as  

score(x)  sTx / sT1, 

where 1 is a vector of ones. Thus score(.) estimates the 
sentiment or emotion of a document as a weighted average 
of the sentiment or emotion scores for the words compris-
ing the document. (Note that if no sentiment or emotion 
information is available for a particular word in V then the 
corresponding entry of s is set to zero.)  

To characterize the emotion content of a document we use 
the Affective Norms for English Words (ANEW) lexicon, 
which consists of 1034 words that were assigned numerical 
scores with respect to three emotional “axes” – happiness, 
arousal, and dominance – by human subjects [21]. Previous 
work had identified this set of words to bear meaningful 
emotional content [21]. Positive or negative sentiment is 
quantified by employing the “IBM lexicon”, a collection of 
2968 words that were assigned {positive, negative} senti-
ment labels by human subjects [22]. This simple approach 
generates four language features for each meme: the hap-
piness, arousal, dominance, and positive/negative senti-
ment of the text surrounding that meme in the (sample) 
posts containing it. As a preliminary test, we computed the 
mean emotion and sentiment of content surrounding the 
100 successful and 100 unsuccessful memes in our dataset. 
On average the text surrounding successful memes is hap-
pier, more active, more dominant, and more positive than 
that surrounding unsuccessful memes, and this difference 
is statistically significant (p0.0001). Thus it is at least 
plausible that these four language features may possess 
some predictive power regarding meme success.  

Consider next two simple dynamics-based features, de-
fined to capture the basic characteristics of the early evolu-
tion of meme post volume:  

 #posts() – the cumulative number of posts mentioning 
the given meme by time  (where  is small relative to 
the typical lifespan of memes);  

 post rate() – a simple estimate of the rate of accumula-
tion of such posts at time .  

Here we adopt a simple finite difference definition for post 
rate given by post rate()  (#posts()  #posts(/2)) / (/2); 
of course, more robust rate estimates could be used.  

The simple dynamics-based measures of early meme diffu-
sion defined above, while potentially useful, do not charac-
terize the manner in which a meme propagates over the 
underlying social or information networks. Recall that the 
predictability assessment summarized in Section 3.1 sug-
gests that both early dispersion of diffusion activity across 
network communities and early diffusion activity within 
the network core ought to be predictive of meme success. 
Additionally, the empirical analysis identifying good early 
sensor blogs presented in Section 3.2 indicates that another 
network feature, the ES blogs in the Web graph, may also 
possess predictive power. The insights offered by these 
theoretical and empirical analyses motivate the definition 
of three network dynamics-based features for meme pre-
diction:  



 community dispersion() – the cumulative number of 
network communities in Web graph Gweb that, by time , 
contain at least one post which mentions the meme;  

 #k-core blogs() – the cumulative number of blogs in the 
kmax-shell of Web graph Gweb that, by time , contain at 
least one post which mentions the meme;  

 #ES blogs() – the cumulative number of ES blogs that, 
by time , contain at least one post which mentions the 
meme.  

The quantities specified in the first two definitions can be 
efficiently computed using fast algorithms for partitioning 
a graph into its communities and for identifying a graph’s 
kmax-shell [16]. Thus these features are readily computable 
for very large graphs. The third feature, #ES blogs(), is 
trivial to compute given the identities of the ES blogs listed 
in Figure 6.  

We now summarize the main results of the prediction 
study (see [16] for a more complete description of the re-
sults). First, using the four language features with the A-
EDT algorithm to predict which memes will be successful 
yields a prediction accuracy of 66.5% (ten-fold cross-
validation). Since simply guessing “successful” for all 
memes gives an accuracy of 50%, it can be seen that these 
simple language “intrinsics” are not very predictive. For 
completeness it is mentioned that the ANEW score for 
“arousal” and the IBM measure of sentiment are the most 
predictive of these four features.  

In contrast, the features characterizing the early network 
dynamics of memes possess significant predictive power, 
and in fact are useful even if only very limited early time 
series is available for use in prediction. More quantita-
tively, applying the A-EDT algorithm together with the 
five meme dynamics features produces the following re-
sults (ten-fold cross-validation):  

   12hr, accuracy = 83.5%, most predictive features: 1.) 
community dispersion, 2.) #k-core blogs, 3.) #posts.   

   24hr, accuracy = 91.5%, most predictive features: 1.) 
community dispersion, 2.) post rate, 3.) #posts.  

   48hr, accuracy = 92.8%, most predictive features: 1.) 
community dispersion, 2.) post rate, 3.) #posts.  

   120hr, accuracy = 97.5%, most predictive features: 
1.) community dispersion, 2.) #posts, 3.) #ES blogs.  

These results show that useful predictions can be obtained 
within the first twelve hours after a meme is detected (this 
corresponds to 0.5% of the average meme lifespan), and 
that accurate prediction is possible after about a day or 
two. Not also that, as has been found with other social dy-
namics phenomena [e.g., 11,12], dynamics features appear 
to be more predictive than “intrinsics”, at least for the fea-
tures employed here. The main prediction results are dis-
played in Figure 7. In particular, the plot at the top depicts 
the prediction accuracy obtainable using just the most pre-
dictive intrinsic feature (ANEW arousal, red), and just the 

most predictive dynamics feature (community disper-
sion(), blue), as a function of the early time series avail-
able . The middle plot shows the prediction accuracy pro-
vided by the full A-EDT algorithm (i.e., employing all the 
features) as a function of early time series available. The 
table at the bottom of Figure 7 summarizes these results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Sample meme prediction results. Top plot shows 
the prediction accuracy obtainable when using the most 
predictive intrinsic feature alone (ANEW arousal, red), and 
most predictive dynamics feature alone (community dis-
persion(), blue), as a function of the early time series 
available. Middle plot depicts the prediction accuracy pro-
vided by the A-EDT algorithm as a function of the early 
time series available. Table at bottom summarizes the re-
sults, reporting the prediction accuracy (in %) and three 
most predictive features as a function of early time series 
available (in hours and as % of mean meme lifespan).  

Summary of Prediction Results

 (% lifespan) accuracy ranked predictive features
0 hr  (0%)           66.5%       1.) arousal, 2.) sent., 3.) happiness. 

12 hr  (0.5%)        83.5%       1.) comms., 2.) k-core, 3.) #posts. 
24 hr  (1.0%)        91.5%       1.) comms., 2.) post rate, 3.) #posts. 
48 hr  (1.9%)        92.8%       1.) comms., 2.) post rate, 3.) #posts. 

120 hr  (4.8%)        97.5%       1.) comm., 2.) #posts, 3.) #ES blogs. 
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