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Abstract
This report summarizes research on a holistic analysis framework to assess and manage risks in
complex infrastructures, with a specific focus on the bulk electric power grid (grid). A
comprehensive model of the grid is described that can approximate the coupled dynamics of its
physical, control, and market components. New realism is achieved in a power simulator
extended to include relevant control features such as relays.  The simulator was applied to
understand failure mechanisms in the grid. Results suggest that the implementation of simple
controls might significantly alter the distribution of cascade failures in power systems. The
absence of cascade failures in our results raises questions about the underlying failure
mechanisms responsible for widespread outages, and specifically whether these outages are due
to a system effect or large-scale component degradation. Finally, a new agent-based market
model for bilateral trades in the short-term bulk power market is presented and compared against
industry observations.
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1. INTRODUCTION

Our way of life in the U.S. depends upon a complex interdependent system of infrastructures.
These infrastructures are currently vulnerable to disruptions that can lead to cascading failures
with serious consequences.  Our future security and wellbeing depend upon the successful
application of science and technology to develop robust infrastructures that can withstand both
terrorist and natural threats.  As an integrated human-cyber-physical system, a resilient “living”
infrastructure of the future could perceive perturbations, analyze the potential impact of changes
to its system health, and respond in a timely manner to minimize the likelihood of realizing some
undesirable state or consequence.

The purpose of this LDRD project was to develop analysis tools and enabling insights that would
allow us to someday realize this vision of living infrastructures. The premise for our research
was that effective infrastructure management, be it real-time active control using a network of
distributed sensors and software agents or long-term evolutionary approaches based on policy
and regulation, requires a systematic approach to identify the significant relevant risks from
potential infrastructure failures and evaluate remedial alternatives. Current risk assessment
techniques, like the N-1 contingency studies performed by electric utilities to assess the
reliability of their systems, are unable to capture the growing complexity of our critical
infrastructure systems that arises from their increasing scale, interconnectivity, and utilization.

To address this challenge, this research formulated a representative and holistic analysis
framework to assess and manage risks in complex infrastructures.  Our work was grounded
through the detailed study of a specific infrastructure: the bulk power grid.  We choose to focus
on the power grid because it is arguably the most complex critical infrastructure due to its sheer
size and highly dynamic nature.  A comprehensive computer model of the bulk power grid was
conceptualized that would approximate the coupled dynamics of its physical, control, and market
components. This model was partially implemented and then integrated into a new risk
management methodology to support improved decision making of mitigation options based
upon the overall utility of decisions from the perspective of a decision maker. Significant
progress was made in this project towards the development of the comprehensive grid model
with the implementation and application of a novel power flow simulator that includes control
elements such as relays. An agent-based market model for bilateral trades in the short-term bulk
power market was also formulated and tested. This paper documents the power grid and market
models and their application results; companion work on an overarching bulk power grid risk
analysis methodology is described elsewhere1.

1.1 The Problem
Our critical infrastructure is characterized by a complex, diffuse, and interdependent “system-of-
systems” that is dominated by poorly understood complexities.  Complexity in infrastructures

1A.M. Koonce, G.E. Apostolakis, and B.K. Cook, Bulk power grid risk analysis: ranking
infrastructure elements according to their risk significance, MIT Engineering Systems Division
Working Paper ESD-WP-2006-19, 2006 (http://esd.mit.edu/wps/esd-wp-2006-19.pdf). See also
final version of this paper to appear in International Journal of Electrical Power and Energy
Systems.

http://esd.mit.edu/wps/esd-wp-2006-19.pdf
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systems is introduced at varying scales through the hierarchy of subsystems comprising physical
and cyber components, linkage of these components within and across infrastructures, as well as
human and economic interfaces.  Driven by increased economic efficiencies, infrastructure
components and systems have become increasingly more coupled and controlled through a cyber
infrastructure layer often implemented on the relatively insecure Internet.  Infrastructures are
hybrids of old and new subsystems, which have myopically evolved largely with only local
operational concern for either security or system vulnerabilities.

The electric infrastructure in the U.S. offers a good example of this complexity. Having started
as isolated individual power systems supplying electricity to local regions across the country, the
electric infrastructure evolved over the 20th Century to become a highly interconnected and
interdependent system spanning much of North America.  The electric infrastructure consists of
three parts: the generation of electric power, the transmission of electricity, and the distribution
of electricity to the end-users. The generation and transmission components are referred to as the
bulk power system, which is the focus on this study and can be thought of as the backbone of the
electric infrastructure. The bulk power grid is an international system that is divided into three
major regions.  These regions are collectively known as the NERC (North American Electric
Reliability Council) Interconnections and include the Eastern Interconnection, the Western
Interconnection, and the ERCOT (Electric Reliability Council of Texas) Interconnection.  The
Eastern Interconnection supplies power to the U.S. states and Canadian provinces east of and
including the Great Plains region.  The Western Interconnection supplies power to states and
provinces west of and including the Rocky Mountain area.  The smallest interconnection,
ERCOT Interconnection, covers the majority of Texas.  The infrastructure representing these
interconnections is strongly connected within the interconnection regions but only weakly
connected across the regions. Over the past several decades the grid has become increasingly
automated with an array of networked, computer-controlled sensors and actuators2 managing
various aspects of the generation and flow of power through the physical infrastructure. As will
be explained in more detail in Section 4 of this report, the physical interconnection of utility
systems across the country combined with deregulation of the power industry in the 1970’s and
1990’s has fostered the rise of a complex bulk power market, through which wholesale power is
bought and sold between utilities.

Our economy, national security, and very way of life are highly dependent on the availability and
reliable supply of electric power.   As the grid has become more complex and demands for power
have grown, the grid has experienced several catastrophic failures that have raised concerns
about our understanding of its stability and are our ability to effectively manage its complexity.
Two notable recent outages include the 1996 Western States and 2003 Northeast blackout. The
Northeast blackout on August 14, 2003 affected over 50 million people and has been estimated
to have had an economic impact between $4 billion and $10 billion in the United States alone3.
These and other outages have raised questions about the robustness of the grid to perturbations,
and specifically whether its increased complexity has introduced system effects that make it

2 These computerized monitoring and management systems are called SCADA (Supervisory
Control and Data Acquisition) or control systems.
3Electric Consumers Resource Council (ELCON). The economic impacts of the
August 2003 blackout. 2004.
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prone to cascading failures.  Recent research has suggested that this may be the case, but as will
be discussed further in Section 3 of this report, we believe this question remains open.

1.2 Research Approach and Objectives
A primary objective of this project was to develop an analysis approach that could assess and
ultimately help manage risks in complex infrastructures. To this end, we gave considerable
attention early in the project to the formulation of a holistic modeling framework that would
capture relevant system features of a complex infrastructure while simplifying analysis. To direct
and ground our research, the bulk power grid was selected for focused study. Commonly applied
in complex systems analysis, a node-and-link network representation was chosen as the basis for
system idealization.  Using this approach, a modeling framework was developed by
decomposing the grid into a number of coupled network systems as shown for neighboring
Utility A and Utility B in Figure 1.  The physical grid, including transmission lines, load busses,
and generators, is shown as the bottom layer.   As will be discussed further in this report, an AC
model must be used to properly simulate power flow in this layer in order to resolve system state
at a sufficient level of detail for the coupled control overlay model.   The consumer overlay
captures the consequences associated with power loss. Unlike all previous work that we have
examined that limits consideration of adverse impacts to revenue loss by the utility, we include
impacts from the perspective of the consumer (e.g., the extended loss of power to a hospital may
lead to loss of life)1.  The consumer overlay also drives power demand at load busses. The
hierarchical mix of automated local component control (e.g., relays) and broader automated and
human-in-the-loop grid management systems are portrayed as the control layer. Finally, the
buying and selling of wholesale power between utilities is shown as the market layer.  Since
deregulation the practice of trading power between geographically remote utilities has become
commonplace, creating large and unplanned-for stresses on the connecting grid infrastructure.
Because of the increased inter-utility power flow, wholesale power trading practices engender
potentially destabilizing conditions and have been attributed as a precipitating influence in the
1996 Western States and 2003 Northeast blackouts.  Resolution of market forces is therefore
critical in any comprehensive modeling framework.

The remainder of this report documents the development, implementation, and application of
models for the physical, control, and market components of the bulk power grid.  Section 2
describes the implementation and verification of a coupled physical-control simulator to
approximate load lost from perturbations of the bulk grid (e.g., losing a transmission line).  This
model was systematically applied to try to identify mechanisms for cascade failure in the bulk
grid, with results from this study presented in Section 3.  The formulation and evaluation of an
agent-based market model are discussed in Section 4.  Conclusions and suggestions for future
work are summarized in Section 5.



10

Figure 1. Conceptual model of the bulk power grid.
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2. PHYSICAL GRID MODEL DEVELOPMENT

This section describes the development process for the physical grid model simulation software
developed as part of this research.

2.1 Background
The goal of the modeling task was to develop a simulation tool capable of modeling a physical
process (in this case, a bulk electric power system), a control process (such as a SCADA/EMS
system), and a market process model.  The intent was to be able to model each one of these
“layers” independent of one another, as well as integrated with one another.  The bulk electric
power system is typically considered to be that part of the system consisting of transmission lines
rated at or above 69kV, thus not including power distribution systems found in city
neighborhoods.  When modeling the bulk electric power system, engineers will also include
major generation and load points4 connected to the system as part of the model.  These models
are used to calculate system parameters using different types of solvers, such as DC solvers, AC
steady-state solvers, and even AC transient solvers, with each solver becoming more complex
and requiring more computing resources and system data. At the physical process level, it was
assumed that we were dealing with a lossless system (line resistance equal to zero), and that the
system slack bus (necessary for steady-state simulation) was not a real bus in the system, but
instead a fictitious bus with no operating limits added to the system for simulation purposes
only5.

2.2 Theory
Common techniques for solving steady-state solutions to power systems are used in the
simulation tool, such as DC power flow6,5, Newton-Raphson AC power flow3,7,5, and Decoupled
Newton AC power flow3,4,5.  Also implemented and used in the simulation tool is a common
method for calculating line outage distribution factors (LODF)8 for a power system.  One area of
new development in the field of steady-state solutions to power systems researched as part of this
project task is approximate disturbance modeling using steady-state power flow information9.
This work attempts to calculate sub-transient and transient data points from steady-state system
data, initially focusing on generator sub-transient and transient responses to line switching
events.  The preliminary developments of this research have been implemented as a solver as
well, appropriately named the sub-transient solver.

4 One example of a load point would be a city neighborhood, and in come cases an entire city.
5 In retrospect, this should not have been the case, as it is important to place practical limits on
the system slack bus as well in order to get quality, solvable systems.
6 Lynn Powell, Power System Load Flow Analysis, New York: McGraw-Hill, 2005.
7 J. Duncan Glover and Mulukutla S. Sarma, Power System Analysis and Design, Pacific Grove:
Brooks/Cole, 2002.
8 Bruce F. Wollenberg and Allen J. Wood, Power Generation Operation and Control, New
York: John Wiley & Sons, 2005.
9 Satish Ranade, New Mexico State University, private communication, 2007.
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This project task attempted to model a very simplistic SCADA/protection system available for
attachment to power systems being modeled, including such devices as circuit breakers, sensors,
controllers, and relays.  The SCADA/protection system modeled also included an algorithm for
automatic generation control (AGC). This AGC algorithm is not traditional in the sense that it
monitors tie line flows between utilities to control generators, but rather it monitors system slack
generation output to control generators in order to replicate the built-in functions of generators to
follow changing load conditions in a power system.

2.3 Software Architecture and Implementation
The software code was written in the Java programming language in true object-oriented
programming (OOP) fashion, and was designed to be modular. Our power flow solver package
JPowerFlow10, for example, relies only on interfaces, making it possible for someone to develop
their own representation of power system devices.  As long as these devices implement the
required solver interfaces, the associated systems will qualify for solving via the steady-state
solvers available in our power flow solver package.  In similar fashion, the SCADA package also
relies on interfaces, with some basic implementations of these interfaces available.  Basic
implementations include circuit breakers, sensors, and controllers.  More sophisticated
implementations of SCADA interfaces include a load-following AGC system object and various
relay protection objects (the relay interface resides in the SCADA package, but the relay
implementations designed specifically for this simulator reside in the simulator package).  The
simulator package itself (which relies heavily on the JPowerFlow and SCADA packages, as well
as the Common package, described below) is also very modular.  For example, various perturb
algorithms can be used to perturb parts of the system as long as they implement the Perturb
interface.  Another example is the simulator interface, which contains code to step through a
simulation.  In this sense, a simulation includes executing the solver and optionally the AGC
and/or relay protection.  It’s possible to extend the simulator interface, overriding the step
function to implement this sequence of events in any desired way.  In our case, we have a DC
simulator class that utilizes the DC solver in the step, and an AC simulator class that utilizes both
the Newton-Raphson and the Decoupled Newton solver in the step, along with the AGC and
protection code.

The Common package contains code developed by the NISAC group as part of the Loki
toolkit11.  It provides common utilities for working with graphs (networks), and this project
utilizes such classes as the generic Graph class and available graph search algorithm classes such
as breadth-first search.

The basic SCADA devices (circuit breaker, sensor, and controller) are interfaces that can be
implemented by power system devices themselves or can be implemented by objects that utilize
reflection.  For example, all load objects in our simulator implement the circuit breaker interface,
which requires a trip and close method.  When the trip method is called the load objects set their

10 An open source software package, copyrighted by Sandia, available at
http://www.sourceforge.net/projects/jpowerflow
11 Loki network toolkit developed originally under NISAC, a joint Sandia-Los Alamos program
funded by DHS.  See http://www.sandia.gov/mission/homeland/factsheets/ nisac/nisac-program-
factsheet.pdf

http://www.sourceforge.net/projects/jpowerflow
http://www.sandia.gov/mission/homeland/factsheets/
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active variable to false, and when the close method is called they set their active variable to true.
However, it is not always possible for objects to implement the sensor and controller interface,
because there may be more than one component of an object that needs to be monitored and/or
controlled.  For example, in the case of a generator object, it may be necessary to monitor
multiple variables, such as output voltage, real and reactive power output, etc.  Since the sensor
interface only contains the getReading method, there is no way to implement this method for
each variable in a generator that needs to be monitored.  Instead, we implement the sensor
interface with an object that uses reflection to read the variable.  Reflection makes it possible to
call upon a method within an object via code at runtime.  So, we simply tell the implemented
sensor object what object we’re interested in and what method were interested in (such as
getVoltage), and it’s able to get the reading for us.

The load-following AGC system object is a sophisticated object warranting more discussion.  As
mentioned before, this object was developed to help generators follow system load as it changes
in a power system being solved in a steady-state solver.  It does this by monitoring the given
system’s slack generators (generators connected to a system slack bus) after each steady-state
solution of the given system and distributing power as needed among system generators.  In a
steady-state solver, the system slack bus picks up the mismatch of power between system
generation and load.  This power mismatch can be positive (in which case there is more load then
generation) or negative (in which case there is more generation then load).  Thus, after each
steady-state solution, the load-following AGC system attempts to distribute the power present at
the system slack bus among the other generators in the system in order to bring the system power
mismatch to zero.

The various relay implementations created for our simulator are fairly sophisticated as well, and
they too warrant more discussion.  Four different types of relays are used in this simulator, with
two relying heavily on the use of an AC solver (Newton-Raphson or Decoupled Newton), and
the other two relying heavily on the use of the sub-transient solver (which in itself requires an
AC solver).  These relays all utilize circuit breakers, sensors, and controllers to read/write data
from/to, making it possible to use these relays with any power system, not just the one
implemented in this simulator.  The four relays can be described as follows:

 Voltage Protection Relay: This relay is present on every bus in the system, and monitors
voltage magnitude values for it’s respective bus.  Depending on the level of protection
the simulation is being run at, this relay will try to keep the bus voltage magnitude within
a preset range by the following means:

o Switch on/off capacitor and reactor banks present at the bus, if any
o Adjust output voltage of nearby generators
o Shed optimal loads (these loads may be connected to other buses)
o Shed local loads (loads connected to this bus)
o Disable the bus entirely

The relay attempts to regulate voltage magnitude in this order (provided each means of
regulation is available), and may try each means of protection more than once before
moving on.

 Line Flow Protection Relay: This relay is present on every line in the system, and
monitors line flow values for its respective bus.  Depending on the level of protection the
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simulation is being run at, this relay will try to keep the line flow below a preset limit
(calculated using LODF) by the following means:

o Adjust real power output of nearby generators
o Shed optimal loads (these loads may be connected to a bus that is not an endpoint

for this line)12

o Disable the line entirely
As with the voltage protection relay, this relay attempts to regulate line flow in this order,
and may try each means of protection more than once before moving on.

 Reverse Power Relay: This relay is present on every generation bus in the system, and
monitors for reverse power (power being consumed by a generation bus rather than being
generated).  If reverse power is sensed, this relay will begin tripping generators present
on this bus offline.

 Instantaneous Overcurrent Relay: This relay is present on every generator in the system,
and monitors for current values above a preset limit for the generator.  If overcurrent
values are sensed, the generator is tripped offline.

The voltage and line flow protection relays are configured using results from a preliminary AC
solve; more specifically, the Jacobian matrix plays an important role in configuring the relays.
The Jacobian matrix is made up of sensitivity values for such relationships as real power and
voltage angle (tight relationship), real power and voltage magnitude (loose relationship), reactive
power and voltage angle (loose relationship), and reactive power and voltage magnitude (tight
relationship).  These sensitivity values help to determine 1) how large of a capacitor/reactor bank
to place at a bus, 2) which loads are optimal for shedding to help maintain voltage magnitude at a
bus, 3) which loads are optimal for shedding to help maintain flow on a line, and 4) which
generators are optimal for adjustment to help maintain flow on a line.

Preset line limits used by the line flow protection relay are calculated using Line Outage
Distribution Factors (LODF).  LODF analysis provides post-contingency line flow values based
on line parameters (reactance, mainly) and the pre-contingency line flow value of the outage line.
The distribution factors provide a quick way of determining the line flow of any line after an N-1
contingency, and are used here to calculate the rated flow of each line such that any line can
handle an N-1 contingency anywhere in the system.

Reverse power and instantaneous overcurrent are events that occur as a power system moves
from one running state to the next and are caused by generators dynamically reacting to
frequency changes in the power system.  These types of events are not evident in a steady-state
simulation due to the fact that steady-state simulations do not include a notion of time or
frequency.  However, by utilizing current research being done in the area of approximate
disturbance modeling using steady-state power flow information6, it is possible to calculate sub-
transient power values for generators in response to line switching events.  These sub-transient
power values can then be used as sensor inputs to the reverse power and instantaneous
overcurrent relays, which will use the power values to determine if a generator is actually

12 We should also attempt to shed loads connected to endpoints of the line as a last resort before
disabling the line, similar to what we do for buses.
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consuming power (reverse power) or if a generator is creating too much current (power values
are used to calculate current values).

2.4 Verification and Validation
The steady-state power flow solvers used in the simulation tool were written at Sandia by Sandia
personnel.  Thus, it was necessary to verify that the results produced by the solvers were correct.
One way this was done was using IEEE test cases13 available as an IEEE Common Data Format
(CDF) file.  There are many test cases, each varying in the number of buses that make up the
power system.  Each of these test case files contains realistic and accurate (solved for) voltage
and power values for the system.  To verify solver results, these test cases were reset to a flat
start and solved.  Resetting to a flat start consists of setting all non-generation bus voltage
magnitude values to 1.0 per-unit14, setting all voltage angle values to zero, and setting all
generator reactive power outputs to zero.  For each test case, the steady-state power flow solvers
present in the JPowerFlow package generated results similar to the data present in the original
test cases (before flat start), with a negligible amount of error for some of the values.  Another
way verification of the results was done was by comparing the results of the steady-state power
flow solvers present in the JPowerFlow package to the results generated by a COTS power flow
solver called PowerWorld.  As before, the steady-state power flow solvers present in the
JPowerFlow package generated results similar to the results generated by PowerWorld, with a
negligible amount of error for some of the values.

Validation of the simulation tool developed is a much more difficult task that at this point has not
been fully executed.  This is mainly due to the fact that, from what we understand, this is the first
time anyone has attempted to model power and control systems together in this way.  However,
we are confident that the control system elements are contributing to realistic results, with the
results being systems with generation redistributed, capacitor banks activated, lines taken out of
service, and in come cases load shed after a system perturbation such as the loss of a line.  Our
confidence in these results stems from conversations we’ve had with members of the academic
community and electric utility personnel about how real systems react to disturbances today.
2.5 Usage
The physical grid model simulation tool was developed with the idea that many random,
statistically accurate power systems would be modeled rather than a single real system.  As
discussed in the next section, this is a standard way to determine the statistical behavior of
failures.  The random power systems are created using degree-degree distribution data as input.
Ways of obtaining this data is also discussed in the next section.  Once a power system is
created, loads are added to the system at each 1-degree bus.  The size of each load object is
specified as an input variable to the simulator in terms of megawatts (MW), along with the
percentage of reactive power (MVAR) in terms of real power (MW).  The total amount of
system load (in MW) is kept track of and is used as input when adding generators to the system.
Generators are added to the system at 2-, 3-, 4-, and 5-degree buses, and the maximum output of

13 Available at the University of Washington’s College of Engineering website.  See
http://www.ee.washington.edu/research/pstca/
14 The per-unit system normalizes voltages, currents, impedances, and powers as percentages of
pre-defined base quantities.  A major advantage of per-unit is the elimination of transformer
turns ratios.

http://www.ee.washington.edu/research/pstca/
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each generator is also specified as an input variable to the simulator in terms of megawatts
(MW).  Initially, each generator’s output is set at 80% of its maximum.  Next, the line
parameters for each transmission line in the system are configured.  Reactance values are
randomly generated between .001-.1, and charging values are determined using a surge
impedance formula that includes reactance and line voltage rating values.  Once this is done, a
power system exists that can now be solved using any one of the solvers available in the
JPowerFlow software package.  The resulting power system is solved using the Newton-Raphson
AC steady-state solver, and the solver results are used as input for configuring the system’s
protection.  Other inputs used for configuring protection are provided as input to the simulator
and include maximum and minimum per-unit voltage values at each bus (used to configure bus
protection), default minimum line limit (used to configure branch protection), and the level of
protection to configure.  The amount of protection configured for each bus and branch in the
system is based on the protection level specified, and includes such things as capacitor banks for
voltage control, generator voltage adjustments for voltage control, generator power output
adjustments for line flow control, and load shedding (both optimal and local) for voltage and line
flow control.  Once the system’s protection has been configured, the protection is executed and
the power system is solved again using a combination of the Newton-Raphson and Decoupled
Newton AC solvers (the Decoupled Newton solver is used first, and if it fails the Newton-
Raphson solver is used).  This cycle is continued until no protection events occur on the power
system.

The power system is now considered fully configured, and is ready to be perturbed.  Inputs to the
simulator for this stage of the simulation include the perturb object to be used, the number of
perturbations to be performed on each power system, and the simulator object to be used.
Custom perturb objects can be written to perturb the system in different ways, such as taking out
the most heavily loaded transmission line in the system or taking out the bus in the system with
the most generation.  Custom simulator objects can also be written to step through the simulation
in certain ways, such as using a DC solver or an AC solver, or using a particular load-following
AGC system.  A simulation step can consist of anything, and as an example one of our simulator
object’s step function consists of solving the power system using the Decoupled Newton AC
solver, executing system protection, and distributing system generation using the load-following
AGC system.  As the system is perturbed and/or system protection is executed, the system may
fragment into two or more systems.  Each fragment created is treated as a separate power system
and is subsequently run through the simulator.

As the simulator executes, changes to the power system are kept track of by each of the power
system objects.  For example, if a transmission line is de-energized due to a perturbation or due
to protection, a flag is set within the branch object itself.  Once the simulation of a system is
complete, the system is analyzed to determine the results of the simulation.  The results data
include the total number of buses and branches in the power system, the number of buses and
branches disabled during the simulation, and the total number of load that was shed (in terms of
MW) due to events that occurred during the simulation.
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3. ELECTRIC TRANSMISSION GRID VULNERABILITY TO CASCADE
FAILURES

Applying the simulator described in the previous section, the objective of this study was to
identify (or eliminate) mechanisms for cascade failure in the electric power transmission grid
(hereafter “the grid”). The August 14, 2003 East Coast Blackout is often given as an example of
a cascade failure15,16,17,18,19,20. A cascade failure is (or should be) distinguished from a blackout
caused by a large scale degradation of its components (e.g., from a 100-mile wide hurricane or a
fuel shortage) in that it is supposed to start with a small isolated failure (e.g., a ground fault on a
single line) that successively induces other isolated failures that “cascade” into an uncontrolled
failure of the whole system; metaphors of dominoes or avalanches are often invoked16,17. The
cascade failure necessarily would be viewed as a system effect, caused by the way that otherwise
nominal components of a system interact. In the case of a system effect, monitoring or repairing
individual components wouldn’t be enough to warn of or prevent system failure; instead, the
system itself would need to be rewired to achieve those goals, a much more demanding task than
simply fixing individual components.

In connection with risk analysis goals of this project, we were interested in cascade failures
because the risk analysis is much more complicated if one small event with moderate probability
can trigger a much larger event (e.g., superblackout). In particular we are interested in the
statistics of cascade failure on the grid. One of the conclusions of simple congestion models
abundant in the physics literature19,20 is that the tail of the distribution density of power lost is a

15 M. Amin, P.F. Shewe, Sci. Am., (May 2007) 60; P.F. Shewe, The Grid (Joseph Henry Press,
2007); S. Robinson, SIAM News 36 (December 2003)
http://www.siam.org/news/news.php?id=377
16 P. Fairley, IEEE Spectrum, (August 2004) 22.
17 B. A. Carreras, D. E. Newman, I. Dobson, A. B. Poole, IEEE Transactions on Circuits and
Systems I 51 (2004) 1733. The work employs data attributed to a NERC report that we haven’t
been able to obtain.
18 U.S.-Canada Power System Outage Task Force, Final Report (April 2004)
http://reports.energy.gov/.
19 B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson, 37th  Hawaii International Conference
on System Sciences, Hawaii, January 2004. This is the only group we know of who employed
any DC power flow calculations; all others (including their first paper, and our previous work,
see Ref. 20) employed surrogates for the flow (e.g., “betweenness”). See also Prof. Dobson’s
web site at http://eceserv0.ece.wisc.edu/%7Edobson/PAPERS/complexsystemsresearch.html for
a large list of his and other related work on modeling blackouts that all argue for power-law
distribution of power failure and system effects causes.
20 M. L. Sachtjen, B. A. Carreras, V. E. Lynch, Phys. Rev. E 61 (2000) 4877; R. Albert, J.
Hawoong, A.-L. Barabasi, Nature 406 (2000) 378; R. Albert, I. Albert, G.L. Nakarado, Phys.
Rev. E 69 (2004) 025103(R); R. Kinney, P. Crucitti, R. Albert, V. Latora, V. arXiv:cond-
mat/0410318 (2004); P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69 (2004) 045104(R); A.
E. Motter, Phys. Rev. Lett. 93 (2004) 098701; L. da Fontoura Costa, Phys. Rev. E 69 (2004)
066127; J. Xu, X. F. Wang, Physica A 349 (2005) 685; V. Latora, M. Marchiori, Phys. Rev. E 71

http://www.siam.org/news/news.php
http://reports.energy.gov/
http://eceserv0.ece.wisc.edu/%7Edobson/PAPERS/complexsystemsresearch.html
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“fat” algebraic (or “power law”21) rather than the expected exponential17. The consequence of a
fat algebraic tail is that massive power failures are much more likely than would be predicted if
the tail decayed exponentially (see Figure 2). A distribution with exponential tails follows
directly from the Central Limit Theorem if one assumes random failures that are identically and
independently distributed. The appearance of an algebraic tail on the other hand suggests that
large failures are at the very least strongly correlated. Most risk analysis is justifiably done with
the assumptions of the Central Limit Theorem but if large power failures follow a fat-tailed
distribution we would need to revise risk analysis for the grid. Data on power failures has been
employed to support claims of a fat tail16,17 but remains both sparse and uncertain. Visual
inspection has been complicated by the frequent redaction of the data and their plots (
Figure 2, Figure 3).

Figure 2. Interpretations of power outage distribution. The left panel (Ref. 16) and right panel
(Ref. 17) correspond to different representations of the same data. The “expected outages”
curve on the left panel corresponds to a distribution with an exponential tail while the “actual

outages” curve corresponds to a distribution with a power-law tail. It’s less clear that a
meaningful exponent of a power law could be extracted from the representation in the right

panel, nevertheless Ref. 17 argues that this is evidence for a power-law distribution of power
failure. It isn’t clear that “customers affected” should be proportional to “power lost”.

(2005) 015103(R); R. A. LaViolette, W. E. Beyeler, R. J. Glass, K. L. Stamber, H. Link, Physica
A 368 (2006) 287.
21 That is, for large x the distribution density decays as x  for 1  3. A density with power-
law tails would display a straight line with a slope of   on a log-log plot (see Figure 1). For
both theoretical and practical reasons,   3  doesn’t constitute a “fat” tail, so it isn’t included in
our definition of algebraic or “power law” tails.
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Figure 3. Another interpretation of power outage distribution. Another representation of the
same power failure data (from Ref. 18). Here it also isn’t clear that there is an exponent

corresponding to a fat tail. As the original caption indicates, this is yet another redaction of the
original data.

So far the data themselves haven’t been enough to settle the question of algebraic vs. exponential
tails22. Therefore we sought to re-examine the question with simple congestion models but with
more realism than currently found in the physics literature.

3.1 The AC Electric Power (ACEP) Model
Our principal idea in this work is that the implementation of simple controls in power flow might
significantly alter the distribution of cascade failures in power systems. Voltage controls are
central to the control of realistic power systems. The study of cascade failure on simple models
employs either DC steady-state power flow calculations6,19 or even simpler surrogates for the
power (e.g., “betweenness”20), without voltage controls.  Unfortunately, voltage isn’t calculated
in any of these calculations but remains fixed; thus the DC model has no controls besides the
slack bus and AGC. In order to implement voltage controls, the next level of realism in the
description of these otherwise simple models, we were compelled to solve the non-linear AC
steady-state power flow equations (instead of the much simpler, linear DC flow model) that

22 An unpublished report by A. Holmberg and S. Molin (“Using Disturbance Data to Assess
Vulnerability of Electric Power Systems”, Nov. 8, 2004) claims to discover a power-law
distribution of power lost in Swedish (mostly Stockholm) utility data. Like the elusive NERC
data, we haven’t been able to recover the original data for our analysis.
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provide both variable power flow and voltage. The AC power flow calculation is much more
complicated than the DC calculation and the DC calculation provides a good approximation to
the AC power flow; this explains why AC calculations haven’t been employed in physics models
of cascade failure. Unless voltage controls are required, there’s no strong reason to prefer an AC
calculation to DC.

Our AC Electric Power (ACEP) model (which is described in full in Section 2) obtains the
steady-state AC power flow on an ensemble of constrained, controlled random networks. We
constructed11 the ensemble of random networks so that they were constrained to reproduce both
the empirical (univariate) degree distribution23 and the empirical (bivariate) degree-degree
correlation of a prototype network24, so that up to second-order statistics in the degree, each
random network is a statistical representative (or surrogate) of the prototype. We chose for our
prototype the transmission grid, i.e., that part of the grid consisting of lines rated at or above
69KV, of the Western Electricity Coordinating Council25 (WECC, formerly the “Western
Interconnect”). The resulting prototype is a sparse dissortative network with average degree of
about 2.6 (Figure 4).

On each network we assigned loads to all of the one-degree nodes, of up to about 10GW. Thus
up to 30% of all nodes became load nodes. The reactive load was assigned to be fraction of the
real load, drawn uniformly random on the interval [0.05,0.15] so that on the reactive load was
10% of the real load. Generation was assigned to a random subset of 2-, 3-, and 4-degree nodes
such that no pair of generators shared the same edge and that only about 20% of all nodes were
generation nodes. The generators themselves were divided into two classes: large (rated at
155MW) and small (rated at 20MW), in ratio about 2:1. The generators are adjusted so that their
initial real output was 80% of their rating. The remaining 50% of the nodes were simply
interconnecting nodes with neither load nor generation.

The lines were assigned random reactance values drawn from a uniform distribution on
[0.001,0.1] (per unit). Lines were protected by relays that trip the line if, in the worst case all
other protective measures fail, the power flow exceeds a limit determined by a Line Outage
Distribution Factors (LODF)8 calculation that calculates post-contingency line flows using line
parameter values and pre-contingency line flows of the outage line. In assigning line limits we
assumed that all lines were rated at 345KV (the WECC transmission grid employs AC lines rated
from 69KV to 345KV; higher rated lines are usually DC). This assignment reflects real world
practice, in contrast to the expedient found in the simple models widely published in the physics
literature19,20 wherein one sets the limit to some fixed ratio of the initial power flow found for the
network.

23 The degree is defined to be the number of edges (lines) connected to a node (bus).
24 M. Boguna and R. Pastore-Satorras, Phys. Rev. E 68 (2003) 036112.
25 http://www.wecc.biz
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Figure 4. WECC transmission grid from anonymized 2005 data26. Only lines rated at 69KV or
higher are shown. Node and edge locations were chosen only to provide a visually clean layout

and have no geographical significance.

The assignment of voltage protection distinguishes this ACEP model from previous work in the
physics literature19,20. We assigned the voltage protection to each network in the ensemble as
follows. We began by calculating the voltage on each of the unprotected networks and noting
which buses had voltages outside of acceptable limits27. Since we match generation to load, all
out-of-limit voltages are initially undervoltages28. We assigned capacitor banks (5 capacitors per
bank) to those buses with undervoltages, determining capacitor sizes using sensitivity data from
AC steady-state simulation results. The banks trip, if ever, sequentially (from smallest to largest)
in order to raise the voltage to within acceptable limits. If for any bus all of its capacitors tripped
without restoring that bus back to normal voltage, the entire network was rejected as unfit; a
network was accepted only if all the buses were found with normal voltage and with some
protection remaining. This is consistent with practice in the real world: only buses that require
protection get protection, for the penalty for assigning unneeded protection is not only the cost of
the hardware but also the loads that such protection itself places on the system. Many networks

26 From the FAIT tool developed under NISAC, a joint Sandia-Los Alamos program funded by
DHS. See http://www.sandia.gov/mission/homeland/factsheets/nisac/FAIT_factsheet.pdf
27 We employed 3%for the acceptable voltage range, consistent with real world practice.
28 Overvoltages are rare in practice and occur here only when a fragement is formed with more
generation than load. We could have but didn’t protect against this rare event.

http://www.wecc.biz
http://www.sandia.gov/mission/homeland/factsheets/nisac/FAIT_factsheet.pdf
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were rejected for this reason. We also rejected proposed networks either because the nonlinear
AC power equations didn’t converge in a reasonable number of iterations (via Newton-
Raphson), or because the in the process of building the network it fragmented (due either to line
failure or bus failure). This is also consistent with real world practice because operators run
feasibility studies to ensure that they have planned or built reasonable networks. Nevertheless
this is inconsistent with the simple models widely published in the physics literature19,20, where
no fitness tests are applied.

The ACEP is a steady-state model so we didn’t (and couldn’t) supply protection against power,
voltage, or frequency transients. Frequency plays no role in this calculation even though
frequency transients are known to be an important source of failure in power grids. We will
resume this issue in the concluding discussion of this subtask. Nevertheless, all of those issues
related to the dynamics of the system are also ignored in the simple congestion models in the
physics literature that generate cascade failures and power-law distribution of power failures.
The ACEP model is therefore intended to be viewed as a simple congestion model with the
addition of a few simple controls. We know that this set of controls isn’t formally minimal (i.e.,
“least restrictive”) but we also know that this set is much smaller than the set of controls that
exist in real world systems.

3.2 Results
The model consists of collecting an ensemble of constrained random networks each with loads,
generation, line ratings (and relays), and voltage protection assigned in a manner that is both
self-consistent and consistent with data and real world practice. As noted above many networks
were rejected in the construction process. Those “fit” networks that did survive were subjected to
one of two types of failure modes: the line with the highest flow was tripped (P=1), or the two
lines with the two highest flows were simultaneously tripped (P=2)29. We limited the networks in
the ensemble to an average of 600 nodes30. We considered four different power levels labeled31

D=2, 3.5, 4.5, and 5.5, corresponding to a range of about 4, 6.5, 8, and 10 GW of load on each
network, respectively. We present here results only for one level of protection (besides AGC and
line relays), i.e., voltage protection. We didn’t present the case of “no protection” because that
case appears to correspond to the results already known in the physics literature19,20 of simple

29 This is different from the usual contingency analyses executed by operators but we are
specifically interested only in the propagation of possibly cascading failures that originate from a
minimal set of worst case scenarios in an otherwise uncompromised system. We regard the study
of systems with significant component degradation as routine and not falling in the category of
“system effects”.
30 The size chosen is an order of magnitude smaller than the WECC grid but was the largest that
would allow us to collect large samples in 24-hour runs because of the computational demands
of the ACEP model. Furthermore we didn’t study system size effects here because the
calculations grow roughly as E 3 , where E is the number of edges in the network (doubling the
system size requires a week of calculation for each ensemble). We made this compromise in
order to discover primary effects, size effects being secondary even though such a study would
be needed for future publication.
31 The designation comes from our assignment of 10 loads per load node, which are assigned
uniformly randomly so that the average is 10 D  MW per load node.
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unprotected congestion models.  Therefore we present here the results for eight ensembles for the
four power levels and the two failure modes.

First we consider some key statistics in Table 1 for the real load lost in the two failure scenarios
for various demands. The maximum load ever lost in the thousands of cases studied was about
10% of the initial load. The distribution of load lost is complicated, being multi-modal (failing
the unimodal hypothesis with the Dip statistic32) for all but one case. We note that the empirical
maximum load lost is not far from the upper confidence limit for the 99.5 th percentile, suggesting
that the size of the ensemble is adequate to sample tail behavior.  We note that the upper
confidence limit for the 99.5th percentile is below 10% load lost in all cases.

Table 1. Statistics for load lost from model results. Statistics for power lost for P lines initially
tripped, demand per load D, and N networks in the ensemble. In all cases the mean real load
lost (Mean, in MW) is less than 3% of the initial real load. The standard deviation (S.D.) is
included only for reference but not as a reliable measure of the width of the distribution. More
reliable is the bootstrap estimate for the 99.5th percentile at 95% or better confidence. Note that
in most cases the upper confidence limit for the 99.5 th percentile is close to the empirical
maximum (Max) for the ensembles. The bootstrap estimate of the DIP statistic demonstrates
the failure of the hypothesis of a unimodal distribution except in the last case. The highest load
cases (10GW) are highlighted; their histograms are shown in
Figure 5.

P D N Mean S.D. Max

Estimated
99.5th

Percentile

Upper
Confidence

Limit for
99.5th

Percentile
Confidence

Level (%)
DIP

Statistic
Prob >
DIP

1 2 4312 35.5 33.0 271.1 178.3 197.0 96.6 0.053 <.001
1 3.5 1716 130.9 90.1 597.7 476.1 584.7 97.2 0.058 <.001
1 4.5 1988 131.8 73.1 624.1 432.6 488.3 97.0 0.059 <.001
1 5.5 2166 166.4 83.8 887.6 556.2 640.2 95.9 0.030 <.001
2 2 3958 68.9 44.9 430.0 258.5 273.1 95.8 0.042 <.001
2 3.5 2131 180.1 96.9 855.4 516.8 593.3 95.4 0.027 <.001
2 4.5 1490 253.1 103.6 816.5 661.5 710.4 97.9 0.026 <.001
2 5.5 1831 307.0 119.6 995.4 794.1 902.9 95.0 0.012 0.09

We expect that a distribution of cascade failures with a “fat” (e.g., power-law with an exponent
no greater than 3) tail to have some events that are more than an order of magnitude above the
mean but we found few that were only even as much as one order of magnitude above the mean.
These results so far don’t appear to be consistent with an especially “fat” tail. Therefore we
investigated more directly the tail behavior by fitting the last 90% of the ordered data of the two
highest demand cases to a Pareto tail but found an exponent of at least 20, out of range of fat tail
behavior. For reference we show histograms of the load lost for the highest demand cases in5.

Figure 5.

32 J. A. Hartigan, P. M. Hartigan, Ann. Stat. 13 (1985) 70.



24

Figure 5. Distribution of load lost from model results. Frequency of the load lost (MW) for the
highest demand (D=5.5, initial load about 10GW) with worst case P=2 in the left panel and P=1

in the right panel. The left panel shows the only case for which the null hypothesis of
unimodality succeeds; the right panel shows a case that is at least bimodal. The farthest left

peak in counts the number of networks with zero power lost in both cases.

Fitting tails is known to be a less robust method to determine their behavior than the Hill
statistic33, a widely accepted34 way to determine exponents (if any) in the tail. The Hill statistic is

described by  1 (n  n0) log
x j
xn0
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 (see Ref. 21 for a discussion of the exponent ),

where the x j  are the ordered data, n0  is taken here to be the index of the 75th percentile and n is
the number of data points up to the 99.5th percentile. To infer an exponent , the Hill statistic
must be flat over a significant range. To calibrate our expectations, we display in Figure 6 the
results from the Hill statistic for an exponential distribution and a Pareto distribution with an
exponent of 3. The Hill statistic increases linearly throughout the range (except for the hook at
the end) for the exponential distribution while it remains flat for the Pareto distribution.  The Hill
statistic for the worst case (P=2, D=5.5) is displayed in Figure 7, which doesn’t yield an
exponent at all but behaves more like the exponential case. We also note that the Hill statistic for
our data begins at 5 and in the flattest region would correspond to an exponent of about 7.
Consequently the Hill statistic either yields no exponent at all34, or it yields an exponent that is
much too high to qualify as a fat tail.

33 B. M. Hill, Ann. Stat. 3 (1975) 1163.
34 A. Clauset, C. R. Shalizi, M. E. J. Newman, arXiv:0706.1062 (2007).

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300



25

Figure 6.  Comparison of Hill statistic for an exponential (red) and a Pareto (blue, =3)
distribution. Both distributions have the same mean and sample size (1000).
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Figure 7. Hill statistic measured for the worst case (P=2, D=5.5) load lost for data in the range
of the 75th to the 99.5th percentile.

3.3 Discussion and Conclusions
We studied a simple model of power congestion on transmission networks that is distinguished
from other such models by the inclusion of voltage controls. In order to incorporate voltage
controls, we were required to solve the much more demanding AC power flow equations instead
of the usual (and for power flow alone, adequate) DC equations. When we tripped the highest
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flow or the two highest flow lines, our results indicate in three different tests that the distribution
of load lost doesn’t have a fat tail, in contrast to published results for uncontrolled model
networks19,20. The range of load lost is too small for a fat-tail distribution and statistical tests fail
the hypothesis of a power law distribution with an exponent no greater than 3. The presence of a
fat tail is taken to be a sign of “complexity”, i.e., system effect that amplify small failures into
large ones. Although our maximum load lost of about 10% would be economically devastating to
many utilities and customers, such magnitudes don’t match superblackouts like the event of
August 14, 2003.

Of course superblackouts have occurred and still occur throughout the world. The question here
is whether these are preceded by large-scale component failures (including failures of control
systems whether human or automatic) or inherent in the way these systems are wired together. If
it turns out that the data do support the assertion of an empirical power-law distribution of power
failures (which remains to us unclear), then the physical causes would need to be found in the
presently intractable (for large systems) studies of dynamic effects which we ignored, such as
transient deviations from 60Hz, or in some combination of steady-state and transient effects,
because we found no evidence for the fat tail in the distribution of power failure from simple
congestion models that included some realistic state-based static controls.

For future work we suggest a systematic study of (a) the actual power failure data (b) size effects
(c) the role of control systems. The latter seems especially important for understanding this
question. Although we chose a set of rules for constructing protection that roughly resembled
real world practice, it was only one such set. Such a systematic study that varies the number and
kind of protecting control systems might reveal the boundary of failure due to system effects.
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4. PRICE DIVERGENCE IN A MODEL OF SHORT-TERM ELECTRIC
POWER MARKET WITH UNSUPERVISED BILATERAL TRADES

BETWEEN MYOPIC AGENTS

4.1 Introduction
As a complement to the research described in the previous sections, the objective of this study
was to model the demands that markets place on the physical electric power delivery
infrastructures. To do this we developed a model of market orders that employs autonomous
agents that don’t require human intervention. One of the key results of that work is that price
divergence can occur simply as a result of the inability of agents to store electric power rather
than due to panic or gouging.

The price evolution in markets for short-term electric power (Figure 8) is the opposite of the
textbook examples of two-good market, for which any price fluctuations rapidly diminish as they
settle down to an equilibrium price (Pindyck and Rubinfeld, 2001).  In the short-term power
market the price fluctuations increase dramatically towards the end of the trading session,
resulting in both high and low prices that can be many standard deviations from the mean price.
This phenomenon could be plausibly attributed to a variety of factors, e.g., the inelasticity of
supply and demand or the structure of the market, that impute to the agents extensive market
knowledge and strategic skills.  Such assumptions would be consistent with both the recent
experience of short-term power markets and with traditional economic theory (Pindyck and
Rubinfeld, 2001).

Figure 8.  Schematic of contracted price as a function of time to deliver power (taken fro`m
Stamber, 2001).
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Therefore it may seem surprising that in this paper we consider instead the hypothesis that the
divergence phenomenon might be attributable to random interactions between myopic agents
(i.e., agents who know only about themselves) with simple preferences expressed as budget
constraints and target quantities of demand or supply.  This hypothesis was inspired by and
parallels the work of (Gode and Sunder, 1993), who provided a minimal model of a double-
auction market with what they termed “zero-intelligence” agents (who bid and ask random prices
without regard to the state of the market or other agents) that produced a price evolution that
rapidly converged to the same equilibrium price as that predicted by the traditional theory with
its assumption of intelligent agents.  Certainly their model did include the one agent endowed
with knowledge of the market, i.e., the auctioneer, who would steer the randomly fluctuating
prices towards the equilibrium by progressively narrowing the range in which the bids and asks
would be accepted.  In the markets of interest here, we consider only bilateral trades without the
benefit of a market maker.  In unpublished work (discussed in Appendix A), Axtell generalized
the Gode-Sunder zero-intelligence agent model to a bilateral market; the divergence
phenomenon was neither sought nor apparent even in that model.  Nevertheless we propose that
a simple modification of the original zero-intelligence assumptions would be sufficient to
produce the divergence phenomenon in a bilateral market of myopic agents.

4.2 Background
The marketing of electric power resources for the purposes of maintaining system integrity while
allowing for profit opportunities beyond the traditional limits of utility regulation have been in
operation in the United States since the passage of the Public Utility Regulatory Policies Act of
1978 (Harris and Moncure, 2004).  This was further enhanced by language in the Energy Policy
Act of 1992 encouraging wholesale power competition. Orders (1996a; 1996b) later issued by
the Federal Energy Regulatory Commission (FERC) codified this language into useable rules.
Bilateral contracting among utilities served as one of a number of useful means for implementing
these reforms.

This trend grew in the last decade and a half with the implementation of market structures
(following on the heels of the FERC Orders) which allowed for long-term contracting (typically
on a bilateral basis) as well as short-term ‘power pool’ markets designed for demand-gap-filling,
typically centered on a Locational Marginal Pricing model, where bids to buy and sell power are
settled by a central arbitrating body, and are based on the locations of supply and demand,
transmission capacity constraints, and offered prices.  Markets for Ancillary Services (e.g.,
spinning reserves, reactive power) have also followed this central arbitration model.  The
marketing of electric power and services has evolved from a wide variety of structures – some
more successful than others – towards a Standardized Market Design (SMD), incorporating these
market elements and others (Kiesling and Mannix, 2002; Zhou, 2003).  We note that the SMD,
as well as most currently developed energy markets, employ a combination of bilateral and
central arbitration structures.  This reflects the desire of market designers to allow for markets to
thrive while taking into consideration that the reliable supply of electric power is paramount.
Short-term settlements in a purely bilateral atmosphere might create opportunities for non-
optimal solutions to the dispatch of power among market participants which, due to physical
constraints of the operating system, could lead to an artificial lessening of reliability for the
participants.  The central arbitration structure is designed so that demand is met in the short term
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at an equitable level of revenue or cost to the sellers or buyers, respectively, while ensuring that
dispatch is resolved reliably.

Nonetheless, bilateral transactions serve the dominant share of marketed electricity (Zhou, 2003).
Establishing bilateral transactions, both for the buyer and seller, minimizes ‘risk’.  For the seller,
the inherent ‘risk’ is that generation capacity which is unnecessary to meet local demand will go
unused, and will not be needed in shorter-term markets due to market pressures from other
sellers with similar exposures.  For the buyer, the ‘risk’ is that unmet expected load, while able to
be met with available capacity, will be done so only at an extraordinary premium.  For both the
buyer and the seller, bilateral transactions minimize the risk that the agreed-to transaction might
be subsequently infeasible because of transmission constraints (e.g., congestion).  The price
element of this risk to buyer and seller alike is best expressed in the variance of the settlement
price seen for electric power as a function of the time of settlement ex ante, as illustrated in
Figure 8 above.  Contracts placed well in advance of necessity are much more likely to be
established at a value which has a minimal degree of variance from the long run marginal cost of
operation of the facility (plus a small profit).  Contracts placed nearer to the time of necessity
face high variability in general, and engender risk to buyer and seller alike.  Much of this is
based on the level of demand relative to availability at the point of need.  In period of low
demand relative to supply, the typical seller will be faced with taking any price, even if at an
usually low price for the period, for the sake of operating the sold capacity.  In periods of high
demand relative to supply, buyers are left with two alternatives: take whatever price is offered, or
reduce demand (through planned outages, customer interruptions, and like actions).  This
situation can be exacerbated by the introduction of bidding structures inherent in the market
structures that create the opportunity for high settlement prices (Hurlbut et al., 2004). Each of
these transaction behaviors takes place with the full knowledge that most of the participants, both
buyers and sellers, are profit-maximizing entities, responsible to shareholders, with all of the
inherent risks (2002).

Bilateral contracting of short-term power (within the security requirements implemented in the
designs of existing short-term markets) remains a useable structure, especially in transactions
between and within areas of the North American power grid which have not yet implemented
structures along the lines of the SMD.  Here, little time is left to waste, as agreements must be
negotiated and transmission access rights secured in a limited window of opportunity.  Many of
the markets following many of the aspects of the SMD have incorporated ‘price caps’ into the
structure; however, for those which have not (or have placed high cap values), and for those
areas following bilateral practices, documented prices for energy have been seen at
extraordinarily high levels, up two orders of magnitude of the price under typical operating
condition, typically for small quantities of power over short periods of time, necessary to
maintain system integrity through times of peak demand (1998).

4.3 Description of the Model
We assumed that the market consisted of agents who traded bilaterally without the supervision of
or input from a market maker.  In the following paragraphs we describe the agents, the initial
conditions, and the transaction rules of this model market.  All of the quantities, budgets, or
prices were taken to be unitless.  The differences between this model and the classical
Edgeworth-box trading paradigm are discussed in the conclusion of this section. The discussion
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of the differences between our myopic agent and the classical zero-intelligence agent (Gode and
Sunder, 1993) is a digression that we defer to Appendix A; the principal difference is that our
agents possess multiple units of quantity and that our agent’s preferences are expressed through
budget constraints rather than with fixed costs or values.  We emphasize that this minimal model
doesn’t provide, e.g., a real-time simulation of the transaction dynamics of an actual short-term
power market (for which we lack the data in any case); instead, we employed it to test
hypotheses about the information agents require in order to obtain the important features of such
a market.

For each trading session we divided the agents into NB buyers and NS sellers.  No agent could
change roles, in contrast to traditional models (see discussion below).  Each agent was endowed
with multiple units of integer quantity (supply or demand, see Appendix B) chosen randomly
from a discrete distribution; the lower bound on the distribution of the quantity was much larger
than unity.  We also endowed each agent with an initial budget B0 chosen randomly from a
continuous distribution.  The buyer’s budget was the amount she could spend to acquire her
initial demand D0.  The seller’s budget was the amount that he was required to recover from the
sale of his initial supply S0.  In contrast to the buyer, his budget was allowed to become negative;
in that regime, all sales would contribute to profit beyond his revenue target.  Each agent always
knew its own quantity and budget but knew nothing about the budget or quantity of the other
agents.  Buyers left the market if their demand was met or if their budget was spent (i.e., they
weren’t allowed to accumulate debt). Sellers left the market only if their supply sold out.

The initial budget distribution was characterized by an initial aggregate price elasticity parameter
c (see Appendix B), which was selected so that the resulting initial budget-quantity curves could
appear to be strongly exponential and inelastic (case EXP) or nearly linear and more elastic (case
LIN) where they intersected.  We considered these two extreme cases, even though case EXP
seems to us to be the more realistic, because we were interested in the sensitivity of the results to
different initial conditions. Figure 9 shows typical supply-demand curves for the initial
conditions, where for each agent its initial value or cost would be interpreted as its B0/D0 or its
B0/S0, respectively.  We stress that the curves in Figure 9 applied only to the initial conditions
because we employed budget constraints rather than value or cost to determine the agent’s
maximum willingness to pay at any moment; therefore the intersection isn’t meant to predict the
mean price.

It wasn’t necessary in this model for all buyers to meet their demand but it was convenient both
for realism and reproducibility; alternative initial conditions that led to some buyers failing to
meet their demand didn’t qualitatively change any of the results presented below. It was enough
to assume a 5% excess total supply to ensure that all buyers in all trading sessions met their
demand, i.e., none left the market because their budgets expired first.  Therefore only 5% of the
sellers failed to sell all of their supply (consistent with our choices for supply and demand) and
only 3% failed to meet their revenue goals (expressed in their budget) in all the trading sessions.
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Figure 9. Supply-demand curves of the agent’s initial conditions for a typical trading session.
See Appendix B for the parameters.  The linear curves (case LIN) are the most elastic where
the two curves intersect; the exponential curves (case EXP) are also the least elastic at the

intersection.

The budget constraints in conjunction with an agent’s initial endowment of multiple units of
quantity played a central role in these bilateral transactions.  Each transaction began by randomly
selecting a buyer and a seller from those remaining in the market.  The buyer entered her bid and
the seller entered his ask for exactly one unit of power, independently of each other, as follows.
The buyer bid a random number drawn uniformly from the interval (0, B/D], where B was her
remaining budget and D was her remaining demand.  The seller’s ask was determined from one
of two cases: For a positive budget, the seller’s ask would be a random number drawn uniformly
from the interval [B/S, B], where B was his remaining budget and S was his remaining supply;
otherwise, because we allowed negative seller budgets, he would ask a random number drawn
uniformly from the interval (0, B0/S0].  If the seller’s budget were positive but he had only one
unit of supply left, his ask would become exactly B; we chose budgets so that this case almost
never occurred in practice.  Those few sellers with a positive budget at the end of the trading
session were almost always those with many more than one unit remaining unsold.  Both of these
choices for constructing bids or asks were conservative compared to the alternative (for the
buyer) of bidding up to her entire budget for one unit or (for the seller) of always asking between
zero and his whole budget.  That alternative would result in some buyers failing to meet their
demand and more sellers failing to meet their revenue goals but it wouldn’t qualitatively change
the results presented below.  Another alternative does strongly impact the results, i.e., expressing
the agent’s preferences with fixed value or cost (see Appendix A) regardless of budget.  We note
that in the case each agent is endowed with exactly one unit of quantity the budget constraint is
equivalent to fixed value or cost; nevertheless, whether the agents are endowed with one or many
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units, that alternative wouldn’t produce the funnel-shaped price divergence anticipated in Figure
8.

The transaction succeeded if and only if the buyer’s bid exceeded the seller’s ask.  In that case,
the sales price was determined by randomly distributing the surplus between the buyer and seller
according to

askaskbidprice  )(
with  selected uniformly randomly on the unit interval (alternatively, one could have fixed 
anywhere on the unit interval without qualitatively changing the results presented below).
Furthermore, each agent’s budget was reduced by the sales price and each agent’s quantity
would be reduced by one unit.  The offers were presented as “take it or leave it”, so that if the
transaction failed, there would be no subsequent negotiation.  No agent employed the history of
bids or asks to calculate future bids or asks.  There was no restriction on or charges for the
number of transactions that were attempted; instead, buyers and sellers continued to be randomly
paired until either there were no buyers left or no sellers left (it turned out that there were always
sellers left because the buyers always met their demands with the parameters specified in
Appendix B).  A particular buyer-seller pair could be drawn randomly more than once because
agents were sampled “with replacement” until an agent was removed from the market .
Transactions that were agreed upon were assumed to be feasible and free from transmission
charges.

Each attempted transaction (successful or not) counted as one unitless step in the trading session.
The step plays the role of time only in the sense of imposing an ordering on the transactions.  In
a real short-term power market, both buyers and sellers are in a race against the clock.  Here, the
trading session was allowed to run as long as there was both supply and demand.  Therefore the
time pressure on the agents manifested itself exclusively through the shrinking supply and
demand; agents weren’t given clocks and could infer “time” only from their remaining budget
and quantity.

This model differs from the classical Edgeworth-box trading paradigm (Pindyck and Rubinfeld,
2001) in three key ways: we abandoned the classical concept of traders by fixing an agent as
either a buyer or a seller; we imposed a more restrictive specification of trading preferences; we
allowed at most one unit of power to be “sold” per transaction without any restriction on the
other good (money). In the classic two-good trading models without production, all traders are
assumed to be consumers of each good who are endowed with some initial quantity.  According
to their indifference curves, they would attempt to make a trade which would increase (or at least
not decrease) their utility.  There would be no restriction on the number of units sold for each
good, except that they must be feasible according to the agent’s endowments.  In making a trade,
there would be no pre-determined buyer or seller; indeed a trader could switch between buying
and selling as necessary to increase his utility.

In our model, we imposed a more rigid structure.  Buyers were identified and given a target
quantity to buy; once it was obtained they were satisfied (never to buy more) and wouldn’t
become sellers.  Likewise, sellers were given a target quantity to sell; once the supply was sold,
they wouldn’t become a buyer.  Thus, we adopted the terms “buyers” or “sellers” to represent
our trader agents since we restricted their behavior accordingly.  This rigid specification of buyer
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or seller preferences isn’t often adopted in classical economics.  Typically preferences exhibit
diminishing marginal utility and local nonsatiation, which were not adopted in this model.  Our
buyer wasn’t required to value the last unit of power any less than the first.  As a result, she may
have paid a higher price for her last unit of good than she did for her first.  Additionally, more is
not always better for the buyer, who will exit the market once her target demand is met.
Physically this is a consequence of the impossibility of storing bulk power.  Instead of allowing
for substitutability between the two goods, we assumed that buyers were only interested in
satisfying their target demand and sellers were only interested in selling their target supply given
their respective budget and cost constraints.

4.4 Results
For each of ten independent trading sessions we initialized two sets of buyers and sellers, one for
each of the two cases EXP and LIN (see Appendix B for the parameters).  In each set, each agent
was assigned randomly selected budgets and quantities.  The two cases produced similar results.
Figure 10 shows two typical trajectories of the sales prices for the two cases, respectively.  We
note immediately the qualitative resemblance of both trajectories to the funnel shaped curve
sketched in Figure 8 as the prices diverge both upward and downward away from the mean price
in the latter part of the trajectories.  The principal differences between the two trajectories are
that many more transactions were attempted in case LIN to close the market than in case EXP
and that maximum prices in case LIN were lower than in case EXP.  For both trajectories, there
was a period for which the prices fluctuate narrowly, corresponding to an elastic regime for both
sellers and buyers, but the prices began to diverge after about 10000 steps, reaching their most
extreme divergence near the end of the session.
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Figure 10. Log-log plot of the sales price evolution generated in a typical trading session for
cases EXP and LIN, respectively.

Figure 10 reproduces the typical trajectory for case EXP (but with a linear price scale) in order
to show the typical rise of the maximum price, which was most dramatic as the market
approached its close.  We also include in Figure 11 the running mean sales price and its variance,
in order to show how they track the growth of the maximum price.
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Figure 11.  Sales price evolution of a typical trading session. Results are for Case EXP, shown
also in Figure 10, in which the evolution of the maximum price is indicated.  The instantaneous
price, the maximum price, the mean price (“running ave.”) are read on the left-hand axis.  The

variance (“running variance”) is read on the right-hand axis.

The large divergences shown in Figure 10 and Figure 11, although anticipated (in fact required
for a realistic treatment of this market), complicate the statistical analysis because the trajectories
never settled upon a steady-state price.  Furthermore, the resulting price distributions were far
from the normal, complicating the interpretation of statistics based on higher moments.  We note
that the mean sales price (36 for EXP, 35 for LIN) didn’t vary much throughout the trajectories
despite the large and rapidly growing variance, which in turn qualitatively tracked the growth of
the maximum sales price.

Figure 12 shows the superposition of the ten trajectories of the maximum price of case EXP,
along with the change in the maximum price.  We also note that large changes in the maximum
price didn’t begin until after about the first one-fifth of each trajectory had evolved. The
maximum change in the maximum price for each trajectory (colored in red) occurred with one
exception in the latter third of the trajectories.
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Figure 12.  Maximum price evolution of the ten trajectories (i.e., trading sessions).  The
evolution of the change in the maximum price and the maximum (for each trajectory) of the

change of maximum price are indicated with triangles.

The empirical probability functions (i.e., cumulative distribution f functions) of the sales prices
from all ten trajectories are displayed in Figure; the two cases nearly overlap.  We also displayed
the empirical probability functions curves for the New England (NE-ISO) and California (CAL-
ISO) sales price data (in USD/MWh); the NE-ISO data were collected from hourly reports for all
of 1999-2002 and the CAL-ISO data were collected from April 1998 through January 2001.  The
comparison of the model with the data is problematic, as we discuss below, because the price
data results from hourly auctions instead of bilateral trades.  The “S”-shaped curve on a semi-log
plot shows that all of the curves in Figure 13 resemble a “log-normal” distribution even though
none of the curves strictly fit the log-normal.  The probability functions are fundamental and
don’t require a bin size to be chosen in advance.  The density distribution function in Figure 14
requires a choice for the bin size (here, 1) but density may be more intuitive; in particular it is
easier to see that the high price tail behavior is similar between the models and the data.
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Figure 13. Comparison of model results to industry sales price data. Semi-log plot of the
empirical cumulative distributions of the hourly sales price (USD/MWh) from NE-ISO and CAL-
ISO compared with the distributions of the instantaneous (and unitless) sales price from the two

cases of the model.

Figure 14.  Log-log plot of the empirical density distributions of the sales price.  The case LIN is
omitted because it would be obscured (except for the lowest prices) by case EXP.
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4.5 Discussion and Conclusions
From inspection of the sales price trajectories themselves ( Figure 10 and Figure 11) and the
maximum prices in each of those trajectories (Figure 11 and Figure 12) we note that the sales
prices diverge in the latter part of the trajectory from the mean price found in the early part of the
trajectories.  The elasticity or inelasticity of the initial conditions (Figure 9) had little to do with
the outcomes of the model or their comparison with data (Figure 13).  With budget constraints
for multiple units of supply or demand, the agents cautiously but continuously adjusted their
ability to pay according to their budgets so that the results were less sensitive to initial conditions
with, e.g., preferences based on fixed values and costs [G-S].  We note that the mean sales prices
corresponding to the cases of elastic (LIN) and inelastic (EXP) initial conditions are similar to
each other and that both are a little larger than the equilibrium price (about 30) that would be
expected from a simple supply-demand curve analysis of the initial conditions; the increase was
due (Figure 11) almost entirely to the divergence of prices especially in the last third of the
market trajectory.

The comparison to the hourly sales price data is problematic because it records prices
(USD/MWh) from auctions, not short-term bilateral trades; we would have compared with
bilateral trade data if it had been publicly available. Nevertheless the comparison is useful if for
no other reason than to investigate the sensitivity of price divergence to market structure.  First,
we note that the price distribution from data is narrower than the model.  This is expected when
using bilateral trading versus auctions (Pindyck and Rubinfeld, 2001). Auctions and bilateral
trades are two very different market structures; nevertheless the behavior in these two structures
is similar for high prices.  In particular we note in Figure 14 that the tail of the price distribution
decreases at roughly the same rate for the model as for the data.  We made no attempt to fit or
censor either the data or the results from the model displayed in Figure 13 and Figure 14; in
particular, the CAL-ISO data includes prices from intervals when supply and demand might have
been manipulated (Sweeney, 2002).

In our model the price divergence results from, on the one hand, the ability of some buyers to
spend the remaining budget that resulted from making beneficial trades early in the market in
order to obtain increasingly scarce supply to satisfy their demand and on the other hand, the
ability of some sellers to sell their excess supply cheaply after they had achieved their revenue
goals.  For both, the preference to either meet their entire demand, or sell their entire supply
motivates each to continue trading even as prices diverge.  It may be that price divergence isn’t
often observed in other markets because those agents may be more willing to refrain from
trading altogether, especially if the quantity being traded is storable.  Our results suggest that
price divergence is a phenomenon that is insensitive to the details of market structure and to the
knowledge that agents might have about each other and of the market itself.

We conclude by observing that a model market of myopic agents, pioneered by the Gode-Sunder
“zero-intelligence” model, is on the one hand extremely simple and on the other  hand able to
account for many qualitative features of the short-term electric power markets.  In particular, the
price divergence seen in such markets might be due to wide range of causes or exogenous
shocks, e.g., a deep knowledge of the market, panic, artifacts of market policies, or clever
strategies by the agents; nevertheless this simple model indicates that such assumptions are
unnecessary.
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We conclude by suggesting that future work incorporate this autonomous market model into the
electric power grid simulations of the previous section, in which the market model provides the
inputs to the simulation of the grid.

4.6 Appendix A
Here we digress to address the differences between what has become the usual development of
zero-intelligence agents (ZIA) and our use of myopic agents.  The ZIA model of a double-
auction market was introduced by (Gode and Sunder, 1993) in order to show that the rules or
constraints of the market overwhelmed the role of the individual trader in determining the
market’s equilibrium price; in particular they showed that the zero-intelligence traders could find
the same equilibrium price predicted from the supply-demand curve, which by contrast assumed
all-knowing agents.  Gode and Sunder’s work has since been widely discussed in the literature.
In particular, (Cliff and Bruten, 1998) expanded this work to argue that the symmetric market
supply-demand curves employed by Gode and Sunder contributed to the convergence to the
equilibrium price.

In any case the one remaining intelligent agent, i.e., the auction house (or market maker) plays a
crucial role in the Gode-Sunder ZIA model.  On the other hand, there is no market maker in a
market of agents making bilateral trades.  Axtell has extended the Gode-Sunder model with an
unpublished ZIA bilateral market, apparently developed as a pedagogical aid.  As with Gode and
Sunder, the agents have exactly one unit to buy or sell. Buyers and sellers don’t switch roles.
The supply-demand curve is linear and symmetric.  Each randomly bids or asks on the interval
(0, B], where B is their value or cost, respectively, for their sole unit.  A bid is accepted if and
only if the bid exceeds the ask and the surplus is divided randomly exactly as discussed in the
description of our model.  The restriction of agents to one unit means that their budgets are
identical to their value or costs.  The result of this model is that prices fluctuate much more than
they do in a double-auction market but these fluctuations nevertheless remain confined to the
narrow value-cost bounds set by the agents.  If allowed enough time, the price evolution in
Axtell’s version also converges (albeit more noisily) to an equilibrium price.  This is portrayed in
Figure A, which shows the price evolution with Axtell’s code for 50000 agents equally divided
between buyers and sellers.
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Figure A. Price evolution with Axtell’s bilateral ZIA market model.  Each of 25000 agents is
endowed with exactly one unit of supply or demand.  Each agent randomly chooses its own

value or cost B uniformly from the interval (0, 30); this produces symmetric linear supply-
demand curves that intersect at P = 15 and Q = 12500.  A transaction is attempted by pairing a
randomly drawn buyer j and a seller k; j bids randomly from the interval (0,Bj] and k asks from
the interval [Bk, 30).  In this trading session 14171 units were transacted for a mean price of

14.9 (equilibrium price was 15.0) in 108 steps.

On the one hand it is gratifying that Axtell’s bilateral ZIA model can also find the equilibrium
price even without the auctioneer; this was the behavior that was sought.  On the other hand, this
convergent price evolution is the opposite of we expect in short-term power markets and what
we did obtain with our myopic agents.  By assigning multiple units of quantity to each of our
agents and employing budget constraints, our myopic agents adjust their preferences against their
remaining budget. It is as though we have collected the one-unit agents together into a firm and
endowed them with the ability to compare notes and adjust their effective values or costs
according to the status of the other agents in their firm.  In this sense our agents violate the pure
non-adaptive ZIA assumptions of Axtell and Gode and Sunder; nevertheless they remain myopic
to the extent that they remain ignorant of both the market and other agents.
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4.7 Appendix B
Here we present details of the initialization of the agents.  We assigned each agent’s initial
quantity (supply S0 or demand D0) from the nearest integer of a random variate drawn uniformly
from the interval [lo, hi], where lo and hi are given in Table A below.  Then we assigned each
agent’s budget first by drawing a random variate X from the continuous probability distribution
F(x), where x is a provisional cost or value, and

],[,
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expexp

hilox
hi)c(lo)c(

x)c(lo)c(
F(x) 




 ,

with both x and c real.  The initial budget B0 for each agent was formed from the product of X
and the initial quantity; therefore the initial cost or value is interpreted as B0/D0 or B0/S0,
respectively.  For small c , F is essentially linear, giving rise to linear supply-demand curves
(case LIN); otherwise, the supply-demand curve is essentially exponential (case EXP).  For the
choice of parameters listed in the Table, supply and demand for case EXP was inelastic where
the supply-demand curves crossed, while supply and demand for case LIN was much more
elastic (see Figure 9) in the same region. We created 10 sets of agents for each of the two cases,
with NB = 1000 buyers and NS = 500 sellers for each set.  The choice of NB and NS were
inconsequential; reversing these numbers gave substantially the same results, as did choosing
both to be the same.

Table A. Parameters employed in initializing the agents for the two cases EXP and LIN.

EXP LIN
Supply

lo 10 10
hi 100 100

Cost
lo 10 10
hi 200 35
c -0.15 -0.01

Demand
lo 10 10
hi 42 42

Value
lo 5 30
hi 50 50
c 0.2 0.01

For each set, the total demand by all the buyers was about 26000 and the total supply from all the
sellers was about 27500 units of power.  We chose the parameters so that in both cases the
supply-demand curves (see Figure 9) intersected at a price of about 30 for each set.
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5. CONCLUSIONS

The purpose of this LDRD project was to develop the analysis tools and enabling insights that
will allow us to design and build robust next-generation infrastructures that can withstand both
terrorist and natural threats. Our research was grounded through the detailed study of a specific
infrastructure, the bulk power grid. We formulated and implemented novel computer models of
the grid that can partially resolve the coupled dynamics of its physical, control, and market
components. In work documented separately, our bulk power simulator was integrated into a risk
management framework to support improved decision making of mitigation options based upon
the overall utility of decisions from the perspective of a decision maker1.

New realism was achieved in the bulk power simulator developed for this project. Significant
attention was given to increasing the fidelity of the simulator to be able to adequately model
relevant features, such as relays, in both the physical power grid and control system overlay.
These improvements increased the simulator’s accuracy, enabling much more realistic and
representative simulations of disturbance scenarios. Fidelity was advanced through the addition
of new control (SCADA) elements into the AC model: four different types of relays - voltage
protection, line flow protection, reverse power, and instantaneous overcurrent - were designed
and implemented. Algorithms for managing power stability, such as automatic generator control
and load shedding, were also developed and tested. Finally, in collaboration with NMSU, we
also developed and tested a new approach to approximate disturbance modeling using steady-
state power flow information. This advancement calculates sub-transient and transient data
points from steady-state system data for generator sub-transient and transient responses to line
switching events9.

A comprehensive study of an idealized regional power grid (a section of the WECC) was
performed to better understand cascade failures. The analysis was performed through simulation
of an ensemble of constrained random networks each with loads, generation, line ratings (and
relays), and voltage protection assigned in a manner that was both self-consistent and consistent
with data and real world practice. Our analysis is distinguished from previous studies by the
inclusion of the control elements discussed above; the addition of these control elements
effectively eliminated the occurrence of cascade failures in simulations. Preliminary results
indicate a much rarer occurrence of large-scale blackouts than has previously been predicted.

Our analysis of grid failure mechanisms suggests that the implementation of simple controls
might significantly alter the distribution of cascade failures in power systems. As discussed in
Section 3, our results cast doubts on the appropriateness of the more simplistic models used
recently by other researchers to examine failure phenomena in the grid from a complex systems
perspective. Their simple models have generated power-law distribution of power failures; these
results are cited as evidence that real large-scale power outages are emergent phenomena of a
complex system, whereby one small failure can potentially lead to the widespread collapse of the
grid.

The absence of cascade failures in our results raises questions about the underlying failure
mechanisms responsible for widespread outages, and specifically whether these outages are due
to a system effect or large-scale component degradation. This distinction is important from a
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mitigation standpoint: in the case of a system effect, monitoring or repairing individual
components would not be enough to warn of or prevent system failure; instead, the system itself
would need to be re-engineered to achieve those goals, a much more demanding task than simply
fixing individual components.

Related results from this project support other grid modernization and related critical
infrastructure protection (CIP) challenges. The risk analysis methodology developed and
published separately by this LDRD1 has near-term application to utilities for compliance with the
new North American Electric Reliability Council’s (NERC) CIP standards, which require a
systematic methodology to identify critical assets. Also, the market model developed in this
LDRD hold promise as a means (when coupled to the power simulator) of evaluating the role of
market forces in creating stresses on the physical grid, providing potential longer-term
opportunities to support DOE with a unique modeling capability that can evaluate policy
alternatives through the simulation of coupled market-grid dynamics.
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