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. Social systems can be represented as:

- Engineered component - interaction structure and rules
- Enforces constraints and processes

- Decisional component - agent’s strategies
- Drives the system
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%:J Engineering Networks and Markets

. Agent-based models can represent both
engineered and decisional components (the
causal structure) of socio-economic-technical
systems in which we live. Examples include:

_ Social networks

- Dynamics are driven by agents’ decisions within
social or technological constraints

- Markets

- Agents have heterogeneous strategies

- Operate within rules, regulations, and existing
Infrastructure
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) — Effective Decision-making Requires an
Understanding of Causal Mechanisms

. Challenges:

- Social systems are only partially observable
- Motivations for behaviors are typically deduced, not measured.
- Behavioral data are often aggregated, and specificity is lost.

- Therefore: Matching output of causal models to observed data is
difficult.

- Both the causal structure of a system and decision-making
strategies of agents can change abruptly.

. Questions:
- Is there a way of automating the competition among causal
models to better our predictive capabilities?
- Can it account for partially observable data (incomplete input)?
- Can it be useful if system changes substantially?
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. Create causal models of the system

. Incorporate results of multiple models into a
earning framework.

. Learning framework maps predictions into
actual observations

. Evaluate individual model contributions

. Re-calibrate models as new data arrives
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@ e Conceptual Framework:
Act / Observe / Select / Recalibrate

Opinion Model Learning Model
» Represent how individuals « Combine results of opinion models
make decisions Brediction » Make decisions and develop
« Represent interaction and ) strategies
constraints in the system » Update learning model parameters
» Generate predictions of based on observations and results
system behavior of prior actions
« Generate data for testing the « Update opinion model parameters
framework

odel parameters

Update interaction M

o Act
» Apply strategy

» Observe strategy effects
» Observe changes in system dynamics
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.- Real-world applications: identify a (set of)
causal models that predict future system
performance and response to interventions

. Test case:

- Create a randomly generated opinion model
and its underlying network

- Apply the learning framework to predict its
dynamics
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.‘(.E) crsas Test Case: Existing Opinion Dynam(i}lcsI
Mode

. Complex Adaptive Systems of Systems
Initiative codified and expanded opinion
dynamics modeling framework*

.- Network of agents share and affect each
others’ opinions

- Weisbuch updating rule, for example

.- Network topology may vary: scale-free,
random, ring...

* Brodsky, N. et al. “Application of Complex Adaptive Systems of Systems Engineering to Tobacco Products”,
ICCS 2011.
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;Jfa) Engineering Test Case Parameters

- What we can observe:

- Average behaviors
- Number of nodes (more or less)
- Partial topological or connectivity parameters

. What we cannot observe:
- Individual strategies

- Exact topology

_ All/complete opinions and behaviors for
individual agents
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(@)

ndividual causal models

* Represent causal structures and interactions that give rise to their
dynamics

Are calibrated to available data
Attempt to predict system output

« Asetofinputs X = x4, ..., xx represent past system behaviors.
« AsetofoutputsY = y,, ..., y, represent system responses to inputs.

« A et of causal models: M = m4, ..., my, each represent a (sub) set of the
systems’ behavior.

o Each model m; has a set of inputs x;;, where i € K; < {1, ..., K}.

o Each model m; has a set of outputs: y;;, wherel € L; € {1, ..., L}.
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.‘(4‘ CAS0S
ﬁ) Engineering Learning Framework

« In our learning framework, output is a function of the set of all causal

models
Y(t+1) = F(ml(t), ...,mN(t)) + €(t)
In comparison, a standard linear model is of the form

Y(t+1) = Z w;x;(t) + €(t)

l
- In a real time setting a key question is also how to re-
calibrate the causal models with newly arriving data. This
work lays the foundation for real time analysis.
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. Create a single instance of a

network

. Create a set of families of models

using known parameters:

- Average opinion
- Number of nodes
_ Information on network structure

. Two randomly generated models

(@)

are sufficient to represent the test
model output when the “learning”
function is a simple linear
regression

Yt +1) = Z wom, (t) + (6)
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. Experimental results

“Red” — the “true” function
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J*J”f) Engineering Online Notes

- In an on-line or real-time setting, the key
usefulness of causal model learning is in the
ability to select from among the “basis” models,
and to recalibrate based on newly arrived
information

. Future tasks include:

- ldentify the “basis” models that best represent
the observed data

- ldentify when the basis model ensemble is
inadequate; e.g., regime change.
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&) croneeing Conclusions

. Connecting causal models to a learning framework
provides an ability to use incomplete causal
information for prediction, and the ability to select
across many possible causal models for best
applicability.

. Preliminary results from a simple opinion dynamics
application demonstrate the utility of using
randomly generated causal models and the learning
framework for prediction.

. Future directions include online estimation and
model selection, and regime change identification
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P4) Engincering Test Case Results Statistics

Coefficients:

Estimate Std. Error £ wvalue Pr{=1tl)
Experiment.1l @.31113 B.083716 8.373 1.46e-11 ***
Experiment.Z2 @.56198 B.82927 19.197 « Z2e-1g ***

Signif. codes: @ "#*¥¥' 3 981 “**' @.01 **' .85 . 8.1 ' 1

Residual standard error: @.008718 on 58 degrees of freedom
Multiple R-squared: @.9968, Adjusted R-squared: @.9966
F-statistic: 8914 on 2 and 58 DF, p-value: < 2.2e-16
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