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Infrastructures are Complex Adaptive Systems of 

Systems or “CASoS”

People design, use, 

construct, maintain, 

evolve...

Western Power Grid (WECC),

69 kev lines and above

LOAD & DRIVE

Multiple Interdependent Infrastructures 

coupled to socio-economic activity that 

generates both a Load and a Drive 
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“Big” events are not

rare in many such systems

COMPLEX: Emergent Behavior

Earthquakes: Guthenburg-Richter

Wars, Extinctions, Forest fires

Power Blackouts?

Telecom outages?

Traffic jams?

Market crashes?

… ???

“heavy tail”

region



  

Illustrations of natural and constructed network systems from Strogatz [2001].

Food Web

New York state’s

Power Grid

Molecular

Interaction

COMPLEX: Emergent Structure



ADAPTIVE: Grow and Adapt

Temporal

Spatial

Relational

Multiple Scales

Grow and adapt

in response to local-to-global policy



Conceptual Lens for Modeling/Design

• Nodes (with a variety of “types”)

• Links or “connections” to other nodes (with a variety of “modes”)

• Local rules for Nodal and Link behavior

• Local Adaptation of Behavioral Rules

• “Global” forcing, Local dissipation

Take any system and Abstract as:

Connect nodes appropriately to 

form a system (network)

Connect systems appropriately 

to form a System of Systems
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Adaptation
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Application: Congestion and Cascades in 

Payment Systems
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US EURO

FXPayment system network

Networked Agent 

Based Model

Global interdependencies

For Details see:

The Topology of Interbank Payment Flows, 

Soramäki, et al, PhysicaA, 1 June 2007; vol.379, 

no.1, p.317-33.

Congestion and Cascades in Payment 

Systems, Beyeler, et al, PhysicaA, 15 Oct. 2007; 

v.384, no.2, p.693-718.

Congestion and Cascades in Coupled 

Payment Systems, Renault, et al, Joint Bank of 

England/ECB Conference on Payments and 

monetary and financial stability, Nov, 12-13 2007.



CASoS Engineering

Harnessing the tools and understanding of Complex Systems, 

Complex Adaptive Systems, and Systems of Systems to 

Engineer solutions for some of the worlds biggest, toughest 

problems: 

The CASoS Engineering Initiative
See: Sandia National Laboratories: A Roadmap for the Complex 

Adaptive Systems of Systems CASoS) Engineering Initiative, SAND 

2008-4651, September 2008.

Current efforts span a variety of Problem Owners:

 DHS, DoD, DOE, DVA, HHS, and others

http://www.sandia.gov/casos/

http://www.sandia.gov/nisac/docs/CASoSEngineeringRoadmap_09.22.08.pdf
http://www.sandia.gov/nisac/docs/CASoSEngineeringRoadmap_09.22.08.pdf
http://www.sandia.gov/casos/
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Critical Infrastructures:

• Are Complex: composed of many parts whose interaction via local 

rules yields emergent structure (networks) and behavior

(cascades) at larger scales

• Grow and adapt in response to local-to-global policy

• Contain people

• Are interdependent “systems of systems”

Critical infrastructures are -

Complex 

Adaptive 

Systems of Systems: 

CASoS

2003: Advanced Methods and Techniques 

Investigations (AMTI)



Engineering Change within 

CASoS:

General infrastructures

Congestive Failure

 Power Grids

 Payment systems 
(Fedwire: financial 
transfer system)

Coupled payment systems 
(Fedwire: FX market: 
Target)

Pandemics

Petrochemicals and 
Natural gas networks

Global Financial Systems

… Combining 
understanding across all 
CASoS application 
domains



Active Refinery Locations, 

Crude and Product Pipelines

LNG Import Facilities (Reactivation underw ay)

Legend

Interstate Pipelines

Intrastate and Other Pipelines

LNG Import Facilities (Active)
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Socio-Technical Systems are:

Complex: composed of many parts whose interaction via local rules 

yields emergent structure (networks) and behavior (cascades) at 

larger scales

Contain people and Grow and adapt in response to local-to-global

policy

Socio-Technical Systems are

Complex

Adaptive 

Systems of Systems

or “CASoS”

Socio-Technical Systems



Application: Community Containment 

for Pandemic Influenza

For Details see:

Local Mitigation Strategies for Pandemic Influenza, RJ Glass, LM Glass, and 

WE Beyeler, SAND-2005-7955J (Dec, 2005).

Targeted Social Distancing Design for Pandemic Influenza, RJ Glass, LM 

Glass, WE Beyeler, and HJ Min, Emerging Infectious Diseases November, 2006.

Design of Community Containment for Pandemic Influenza with Loki-

Infect, RJ Glass, HJ Min WE Beyeler, and LM Glass, SAND-2007-1184P (Jan, 2007).

Social contact networks for the spread of pandemic influenza in 

children and teenagers, LM Glass, RJ Glass, BMC Public Health, February, 2008.

Rescinding Community Mitigation Strategies in an Influenza 

Pandemic, VJ Davey and RJ Glass, Emerging Infectious Diseases, March, 2008.

Effective, Robust Design of Community Mitigation for Pandemic 

Influenza: A Systematic Examination of Proposed U.S. Guidance, VJ 

Davey, RJ Glass, HJ Min, WE Beyeler and LM Glass, PLoSOne, July, 2008.

Health Outcomes and Costs of Community Mitigation Strategies for an 

Influenza Pandemic in the U.S, Perlroth, Daniella J., Robert J. Glass, Victoria J. 

Davey, Alan M. Garber, Douglas K. Owens, Clinical Infectious Diseases, January, 2010.
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Application: Industrial Disruptions

Disrupted Facilities Reduced Production 

Capacity

Diminished Product Availability



Application: Petrochemical & Natural Gas
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Application: Congestion and Cascades in 

Payment Systems
 Network defined by Fedwire transaction data:

 Payments among more than 6500 large commercial banks

 Typical daily traffic: more than 350,000 payments totaling more 
than $1 trillion 

 Node degree and numbers of payments follow power-lay 
distributions

 Bank behavior controlled by system liquidity:
 Payments activity is funded by initial account balances, 

incoming payments, and market transactions

 Payments are queued pending funding

 Queued payments are submitted promptly when funding 
becomes available

For Details see:

The Topology of Interbank Payment 

Flows, Kimmo Soramäki, Morten L. Bech, 

Jeffrey Arnold, Robert J. Glass and Walter 

E. Beyeler, PhysicaA, 1 June 2007; vol.379, 

no.1, p.317-33.

Congestion and Cascades in Payment 

Systems, Walter E. Beyeler, Robert J. 

Glass, Morten Bech, Kimmo Soramäki, 

PhysicaA, 15 Oct. 2007; v.384, no.2, p.693-

718.
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Application: Coupled Payment Systems

US EURO

FX

For Details See:

Congestion and Cascades in Coupled Payment Systems, Renault, F., W.E. 

Beyeler, R.J. Glass, K. Soramäki and M.L. Bech, Joint Bank of England/ECB 

Conference on Payments and monetary and financial stability, Nov, 12-13 2007.


