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Abstract 

Random networks were generated with the random configuration model with prescribed truncated power-law degree 
distributions, parameterized by an exponent, an offset, and an exponential rolloff. As a model of an attack, each network 
had exactly one of its highest degree nodes removed, with the result that in some cases, one or more remaining nodes 
became congested with the reassignment of the load. The congested nodes were then removed, and the ‘‘cascade failure’’ 
process continued until all nodes were uncongested. The ratio of the number of nodes of the largest remaining cluster to the 
number of nodes in the original network was taken to be a measure of the network’s resiliency to highest-degree node 
removal. We found that the resiliency is sensitive to both rolloff and offset (but not to cutoff) in the degree distribution, 
and that rolloff tends to decrease resiliency while offset tends to increase it. 
r 2006 Elsevier B.V. All rights reserved. 
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1. Introduction 

For a wide variety of systems, the density f of the variable x of interest resembles a scale-free distribution [1], 
i.e., 

f ðxÞ / x-b . (1) 

If, for the extremes of small and large x, there were also an offset and an exponential rolloff, respectively, then 
a better description of data would be given by 

f ðxÞ / expð-rxÞðf þ xÞ-b , (2) 

where r is the rolloff strength, and f is the offset. With no rolloff but finite offset, f still would be 
asymptotically scale-free. With a finite rolloff, f is sometimes called a truncated power-law distribution 
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(regardless of offset), e.g. Ref. [2], and describes a wide variety of systems and models, including self-avoiding 
random walks [3], and, of interest here, the degree distribution of finite random graphs [4,5]. A natural point 
of view is that r measures the distance to the critical point (that corresponds to zero rolloff) and the 
appearance of the scale-free behavior, e.g., see discussions of branching processes [6], self-organized criticality 
[7], and percolation processes on networks [8]. 
Turning now to abstract networks, the resiliency with respect to disconnection in scale-free networks, i.e., 

networks with the density of the degree k describing the scale-free degree distribution (1) has been widely 
studied, e.g., Refs. [1,8–16]. We are interested in particular in the resiliency to cascade failure of congested 
networks, and to that end we follow Motter [16], who studied cascade failure as a consequence of an 
intentional attack on a network. One of the tactics he considered was the removal of exactly one of the highest 
degree nodes in a scale-free network; subsequent nodes were removed only if they became congested after the 
removal of the first node. If the process continued, it would become a cascade failure. This approach to model 
network failure is different from earlier widely cited studies of network resilience (e.g., Refs. [12–14]), in which 
nodes were either randomly or sequentially removed from scale-free networks. 

In the following, we examined the sensitivity of cascade failure to rolloff and offset in congested random 
networks generated with prescribed degree distributions of the form (2). Although our networks differed from 
those employed by Motter [16], our approach to the problem was essentially the same as his, but without his 
subsequent discussion of remediation strategies, which are beyond the scope of our work. 

2. Calculations 

The calculation consists of generating the networks, calculating the load, removing congested nodes, and 
monitoring any consequent disconnection. Undirected networks were generated via the random configuration 
model [1], with prescribed distribution f of the degree k of the form of (2), normalized on the interval 1pkpK, 
and specified by the configuration fr; b; f; Kg, where r is the rolloff strength (0, 0.05, 0.1), b is the power (2.0, 
2.2, 2.5, 2.8, 3.0), f is the offset (0 or 2), and K is the cutoff of maximum degree (20, 40, 200). Fig. 1 shows the 
effect of rolloff and offset on f for b ¼ 2:5. 

For each configuration, we generated 1000 of these ‘‘random configuration’’ networks, as follows. We 
assigned degrees to initially unconnected nodes by randomly sampling from the degree distribution f. We
collected random pairs of nodes and connected them if both had at least one unconnected ‘‘slot’’. We never 
connected the same pair twice. There were always so many one-degree nodes that we never failed to fill up the 
‘‘slots’’ in the higher degree nodes. The resulting network consisted of many components, of which most were 
Fig. 1. The degree distributions log2 f (vertical axis) for K ¼ 40 and b ¼ 2:5 vs. log2 degree (horizontal axis). The colors red, blue 
correspond to r ¼ 0, 0.01, respectively. The line styles solid, dashed correspond to f ¼ 0, 2, respectively. The circles correspond to the 
histogram of the distribution for the fr ¼ 0:1; f ¼ 2g with a unit binwidth, sampled from 1000 networks with a mean number of 1000 
nodes. 
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Fig. 2. Average excess edge density De/N (vertical axis) vs. b (horizontal axis). Red corresponds to zero rolloff, green and blue correspond 
to rolloffs r ¼ f0:05; 0:1g, respectively. The open squares correspond to zero offset and the crosses correspond to offset f ¼ 2. The 
standard errors are about 10%, or about twice the size of the symbols. The cutoff K ¼ 40 for all the curves. The dotted lines are only a 
guide to the eye. 
small but one was much larger than the rest, i.e., the ‘‘giant cluster’’, discussed in, e.g., Refs. [1,17]. Only this 
giant cluster became one of our trial networks. The number of nodes N of each giant cluster depends on all of 
the parameters in the configuration, therefore, for each configuration, we adjusted the size of the initial 
number of nodes so that, for each of the 1000 networks, N would fluctuate around a mean of 1000. The 
resulting distribution of N in the giant clusters was normal, with standard deviations in the range 10psp100. 
Fig. 2 shows excess edge density De/N (i.e., the number of edges -(N-1), or, the cycle rank of a connected 
graph [18], divided by N), which is zero for trees, and which decreases monotonically as b increases, 
corresponding to a decreasing number of cycles and an increasing tree-like structure with increasing b, for 
each choice of rolloff and offset. We note that the average degree (which is related to De ) decreases in the same 
way as De/N. All of the networks that we generated in this way were dissortative, i.e., with a negative mixing 
assortativity statistic [19], and which also tracked b monotonically. 

As in Motter [16], we calculated the betweenness-centrality [1,20–22] of each node (i.e., the number of 
shortest paths passing through that node) and called that its load. We fixed the capacity of each node to be 
130% of its initial load so that a node ‘‘failed’’ and was removed along with its edges, if it ever became 
congested, i.e., subjected to a load above its capacity. Then we perturbed each network as follows: from each 
network we removed exactly one of its highest degree nodes, after which the load was recalculated for all of the 
remaining nodes. It often happened that after the removal of the first node that at least one of the remaining 
nodes became congested. The congested nodes were removed, and the process continued as the loads were 
recalculated until every remaining node was uncongested. The removal of congested nodes usually resulted in 
the network becoming disconnected even if only to a small extent. Also as in Motter [16], we measured the 
extent of the disconnection with G, the number of nodes in the largest remaining cluster divided by N, for each 
network. High G values (near 1) correspond to resilient networks, while lower G values correspond to more 
fragile networks. In many applications, which we do not pursue here, a G of much less than 0.9 would be 
considered to be a serious degradation of the network. As expected, G was uncorrelated to the variations in the 
size of the giant cluster. 

3. Results 

Fig. 3 shows that the distribution of G is broad and highly skewed towards low G for all configurations with 
finite rolloff, and even for some with no rolloff, and develops multiple modes for the less resilient cases (finite 
rolloff, no offset, higher b). The distribution of G is consistently narrow only for the configurations with no 
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Fig. 3. Cumulative distribution in percent (vertical axis) of G (horizontal axis). The top, center, and bottom panels correspond to 
exponents b ¼ ð2:0; 2:5; 3:0Þ. Red corresponds to no rolloff, green and blue correspond to rolloffs r ¼ ð0:05; 01Þ, respectively. The open 
squares correspond to zero offset and the crosses correspond to offset f ¼ 2. The cutoff K ¼ 40 for all the curves. 
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Fig. 4. Mean G (vertical axis) vs. exponent b (horizontal axis). The lines are guides to the eye; the case of no rolloff, no offset is given a 
solid line to aid the comparison. As in Fig. 3, red corresponds to no rolloff, green and blue correspond to rolloffs r ¼ ð0:05; 0:1Þ, 
respectively. The open squares correspond to no offset and the crosses correspond to offset r ¼ 2. Dashed lines without symbols 
correspond to the configurations fr ¼ 0; f ¼ 0; K ¼ 200g and fr ¼ 0:1; f ¼ 0; K ¼ 20g, respectively; the symbols correspond to K ¼ 40. 
The standard error of the mean of G is less than 0.01. 

Fig. 5. The mean G (vertical axis) as a function of, respectively, the mixing assortativity ( x 10, with red circles), the local clustering 
coefficient ( x 100, with green squares), and the average degree (with blue squares and crosses), all read on the horizontal axis. The cutoff 
K ¼ 40 for all of the results presented in this figure. The standard errors are 1–3% for the mixing assortativity, 10–30% for the local 
clustering coefficient, and no more than 0.2% for the average degree. 
rolloff and finite offset. We show the mean G in Fig. 4, but the nature of the distributions make the percentiles 
at least as useful (if also more uncertain) a statistic [23]. The upper bound of the standard errors of the mean is 
0.01. The standard error is a symmetric statistic, but more realistic uncertainty intervals for mean would be 
skewed towards low G values; indeed, for most configurations, we found at least one network with G below 
0.2, many standard errors below the lowest mean G. 

Both Figs. 3 and 4 show that the introduction of the rolloff usually decreases the resiliency of the network to 
disconnection after high-degree node attack, as seen in either the reduced mean G, except for (b ¼ 2:8, 3.0; 
zero offset) where this behavior is unexpectedly reversed. The introduction of the finite offset on the other 
hand increases its resiliency (except for r ¼ 0:1, b ¼ 3:0). The results are not sensitive to the choice of the 
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cutoff, at least in the following sense: making the cutoff larger does not make most resilient results much 
worse, making the cutoff smaller does not make the least resilient results much better, and it does not alter the 
qualitative variation with of G with topology. 

In an attempt to begin to understand the topological origins of these results, we display in Fig. 5 the mean G 
vs. the following statistics for the unperturbed networks: the mixing assortativity [1,19], the local clustering 
coefficients [1], and the average degree, (the latter of which is also related to the excess edge density De/N by 
2(De/N+1), to within 1/N). Almost any mean G between 0.4 and 0.95 (effectively almost any G for a given 
network) can be found for the unperturbed networks characterized by these statistics below a threshold of 
about 0 for the mixing assortativity, 0.01 for the local clustering coefficient, and 3 for the average degree. All 
three of the topological statistics studied here vary monotonically with b for fixed r and f or with r for fixed b 
and f; in particular increasing the rolloff always lowers the mixing assortativity, the average degree or edge 
density, and the local clustering coefficient, while increasing the offset raises all of these. On the other hand, it 
is apparent in Fig. 5 that the mean G achieves a minimum as a function of the mixing assortativity. Minima in 
the mean G vs. configuration parameters are also apparent in Fig. 4. 
4. Summary and conclusions 

We employed G for the figure of merit for resiliency. The introduction of the rolloff r to the scale-free 
degree distribution makes the resulting random networks less resilient to congestion-driven cascade failure 
(but not for b ¼ 3; see Figs. 3 and 4), which is reflected in broader distributions of G and the lower mean G. On  
the other hand, the introduction of the offset f makes the networks more resilient than the corresponding 
networks with no offset (but not for r ¼ 0:1; b ¼ 3; see Figs. 3 and 4). The most resilient case considered here 
was that of no rolloff with finite offset, for which cascades hardly developed at all. A rough explanation for 
these trends is that the rolloff makes the networks more sparse and tree-like, while the offset makes networks 
with more edges and cycles (see Fig. 2). Although those observations are correct, they do not provide a 
complete explanation for the trends because, as Fig. 4 shows, the mean G achieves a minimum in networks 
which are less tree-like, i.e., with more edges and cycles, than the most tree-like considered here (b ¼ 3, no 
offset. We do not have an explanation for the appearance of the minima in Fig. 4, i.e., for why the most tree­
like cases should be more resilient than those networks of moderate connectivity. Nevertheless, this behavior 
reminds us of Braess’ paradox [24], which describes cases in which removing edges can unexpectedly improve 
congestion. 

There appears to be a threshold in topological statistics (e.g., mixing assortativity, cluster coefficient, 
average degree, and excess edge density) for resilient behavior, below which a wide variety of behaviors are 
nearly equally probable (Fig. 5). In the absence of a theory we refrain for now from calling these empirical 
thresholds ‘‘critical’’ but we hope in future work that we might be able to identify these thresholds as such. 
Although cascades can, and often do, occur in any network following highest-degree node removal, these 
thresholds in mark a transition in their effectiveness so far as disconnection is concerned. 

In conclusion, the resiliency of networks to this kind of failure was not found to be especially sensitive to the 
choice of maximum degree. On the other hand, the resiliency was found to be sensitive to those deviations 
from scale-free behavior that can be expressed with a finite offset, rolloff, or both. 
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