Real-Time View Synthesis Using Commodity Graphics Hardware

Ruigang Yang, Greg Welch, Gary Bishop, Herman Towles *
Department of Computer Science, University of North Carolina at Chapel Hill

1 Our Real-Time View Synthesis Method

We present a novel use of commodity graphics hardware that ef-
fectively combines a plane-sweeping algorithm [Collins 1996] and
view synthesis in a single step for real-time, on-line 3D view syn-
thesis. Unlike typical stereo algorithms that use image-based met-
rics to estimate depths, we focus on using image-based metrics to
directly estimate images. Using real-time imagery from a few cali-
brated cameras, our method can generate new images from nearby
viewpoints, without any prior geometric information or requiring
any user interaction, in real time and on line.

For a desired new view C),, we discretize the 3D space into a
number of candidate focal planes {D;} parallel to the image plane
C,, of the desired view. These candidate planes discretize each de-
sired view ray into a finite set of sample points. We step through
the set of candidate focal planes, looking for the sample point along
each view ray that offers the maximum color consistency among in-
put images. Each final image pixel is determined by the color at this
point of maximum consistency.

To accomplish this, for each candidate plane D; we project (tex-
ture) the input images onto that plane. We then render the resulting
textured plane onto the image plane of C,, to get an image (I;) of
D;. We combine these two operations into a single homography
(planar-to-planar) transformation. In the first row of Figure 1, we
show a number of images from different planes. Note that each of
these images contains the projections from all input images, and
the area corresponding to the intersection of objects and the correct
candidate focal plane remains sharp. For each pixel location (u,v)
in I;, we compute the mean and Sum of Squared Difference (SSD)
score. The final color of (u,v) is the color with minimum SSD score

We have discovered a novel use of graphics hardware to carry
out the entire computation on the graphics board. Modern graphic
cards, such as NVIDIA’s GeForce series, provide a programable
means for per-pixel fragment coloring through the use of register
combiners [Kilgard 2000]. We exploit this programmability, to-
gether with the texture mapping functions, to carry out the entire
computation on the graphics board.

2 Hardware Acceleration

In our hardware-accelerated renderer, we step through the candidate
focal planes from near to far. At each step (z), there are two stages
of operations, scoring and selection. In the scoring stage, we set
up the transformation according to the new view point. We then
project the reference images onto the plane D;. The textured D; is
rendered into the image plane (the frame buffer). In this stage, the
Pixel Shader is configured to compute the SSD score and the frame
buffer acts as an accumulation buffer to keep the mean color (in the
RGB channel) and the SSD score (in the alpha channel) for D;. In
the second row of Figure 1, we show the SSD score images (the
alpha channel of the frame buffer) at different steps.

In the next selection stage, we need to select the mean color with
the smallest SSD score. The content of the frame buffer is copied to
a temporary texture (T'york), While another texture (1'yqme) holds
the mean color and minimum SSD score from the previous step.
These two textures are rendered again into the frame buffer through

*E-mail: {ryang, welch, gb, towles} @cs.unc.edu

Figure 1: Mean color (above) and SSD scores encoded in the al-
pha channel (below) for different candidate focal planes in the first
scoring stage. The scene consists of a teapot and a textured planar
back wall.

Figure 2: Example setup for 15 frame-per-second on-line recon-
struction using five cameras.

orthogonal projection. We reconfigure the Pixel Shader to compare
the alpha values on a per pixel basis, the output color is selected
from the one with the minimum alpha (SSD) value. Finally the
updated frame buffer’s content is copied to T'frqame for use in the
next step.

One major advantage of our method is that once the input im-
ages are transferred to the texture memory, all the computations are
performed on the graphics board. There is no expensive copy be-
tween the host memory and the graphics broad, and the host CPU
is essentially idle except for executing a few OpenGL commands.

3 Preliminary Results

We have implemented and tested our method with an NVIDIA
GeForce3 graphics card. A typical reconstruction (256x256 output
resolution with 50 candidate planes) takes less than 70 ms. Figure
2 shows our setup and a sample result. More compelling, interac-
tive results can be found in the accompanying videotape. To better
illustrate the results we include some live red-blue stereo sequences
on the video.

References
COLLINS, R. T. 1996. A Space-Sweep Approach to True Multi-image

Matching. In Proceedings of Conference on Computer Vision and Pat-
tern Recognition, 358-363.

KILGARD, M. J. 2000. A Practical and Robust Bump-mapping Technique
for Today’s GPUs. In Game Developers Conference 2000.



