
R®

Page 1

An Insiders Guide:
Janus Optimization and Troubleshooting

Ben Cole, Intel Computational Scientist at SNL
Pat Fay, Intel Computational Scientist at LANL

Greg Henry, Intel Computational Scientist in OR
http://www.sandia.gov/ASCI/Red/usage/optimize.html
http://www.sandia.gov/ASCI/Red/usage/optimize.ps

R®

Page 2

Overview
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 3

Sigportals - Message Passing Failures

Recv SIGPORTAL: msg drop, Rank:304 Portals:62, Load Control Portal src
nid:4624,msg_len:6912,match_bits:0x3200d, offset:0 EXITING!

◆ Fundamental meaning: Something (the app, the OS, something) has dropped a message. Note: at
this level the “other node” may be a service/IO node.

◆ Rank: mynode()

◆ Portals: Portal number for which the signal has occurred. (more in a minute)

◆ src nid: Node number (according to the OS, not the application) from which the message was
sent: For user communications (MPI,NX), one can get the app node number corresponding to this,
but this process is laborious. Contact one of the comp sci’s. (and one of us should write a tool for
this.)

◆ len: length, in bytes, of the message

◆ match_bits: For user communications, this is the message type.

◆ Offset: Let us know if it is not zero.

R®

Page 4

Sigportal Problems by Number

◆ Depends on the Portal Number
◆ MPI Portals

— 53-56, 62 (note below)
— Sigportals on these are usually caused by exhausting your MPI environment

space. See http://www.cs.sandia.gov/~bright/mpi/Options.html

◆ NX Portal
— 5,60 NX_RECV(?)
Sigportals on these are usually caused by exhausting your NX message

buffering space. Try increasing them via the -comm flag to yod.

◆ IO-related portals:
— 0-4
We don’t expect you to see these except through memory corruption.

◆ OS-related portals:
— 61-63
— 62 is reused for MPI. Its use by the OS is restricted to program loading.

(so SIGPORTAL on 62 before your program starts to execute is an OS problem,
otherwise MPI).

R®

Page 5

More Comments on Sigportals

◆ Almost any of these can also be caused by memory management errors
◆ You can (though we don’t recommend it) use both NX and MPI in an

application. In particular, if a library uses message-passing calls, it may
be using a different communications framework from what you’re using
in the application. Beware!

R®

Page 6

Overview - the Debugger
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 7

What to do when large production jobs stop making
progress and you’d like to figure out why (or gather
enough information to beat on your code team, at

least.)

◆ Attach the debugger to the ‘running’ job.
—debug -a <PID of the yod command for this run>

◆ “spacebar” through the initial messages (once they
come up).

◆ Issue these commands:
more off
log <filename>

◆ All output now logged to file

R®

Page 8

◆ Suggested debug commands to run:
process
recvqueue
someday: sendqueue
where

◆ Real Sandia Apps where this has been done on over
1024 nodes:

—CTH
—Pronto
—Zapotec
—Alegra

Other Useful Debug Commands After Attaching

R®

Page 9

(When debugging your application)
—on a large number of nodes, “where” can cause the debugger

itself to memory fault.

App. Itself is not impacted.

Log file is preserved

workaround: use the context command to get this information in
chunks (256, 512) of nodes.

Debug’s ‘where’ Command Bug

R®

Page 10

Debug: Using Watchpoints

◆ Set a watchpoint on a variable. Debug will interrupt your program when
variable is read/written (with an optional conditional statement).

◆ Useful for memory problems (say you know x(100) is getting trashed but
you don’t know how).

◆ Example: checking errno. I want to find where in my program free() is
failing. Free() sets errno = EINVAL when it finds a problem. Free() can fail
due to memory overruns/underruns, invalid pointers.

◆ Other useful variables for watchpoints:
— profile_total_bytes_used: set by malloc/free for current total heap usage. Use

profiling to find out max heap used and then use ‘stop -w’ to break when
profile_total_bytes_used is near to the max heap used

— libdbmalloc.a sets malloc_errno when it finds an error.

R®

Page 11

Debug : Using Watchpoints
Example

◆ Example: Find free() failures with watchpoints
janus ~/tst 148 > cat ck_errno.c

#include <stdio.h>

#include <errno.h>

#include <nx.h>

#include <malloc.h>

#include <stdlib.h>

#include <sys/types.h>

int *my_errno = &errno;

void ck_errno(void) { /*now my_errno is in scope*/

 if(mynode()== -1 && *my_errno == 0)

 { printf("This will never happen\n");}

}

int main(int argc, char **argv) {

 int *int_ptr;

 ck_errno();

 int_ptr = (int *)malloc(100*sizeof(int));

 int_ptr = int_ptr + 1;

 /* int_ptr != base of the malloc'd area so free fails*/

 free(int_ptr);

 printf("above free() should fail.\n");

 printf("errno= %d\n",errno);
 return 0;

}

R®

Page 12

Debug: Compiling and Running the
Watchpoint Example

◆ Compiling
janus ~/tst 148 > pgcc -cougar -g -O0 ck_errno.c -o tstc

◆ Debugging
janus ~/tst 149 > debug -sz 1 tstc

*** Debug (Parallel Debugger), Release 2.4

*** reading symbol table for /Net/usr/home/pfay/tst/tstc...

*** initializing Debug for parallel application...

*** load complete

(0) > stop ck_errno

(0) > run

(0) > where #now errno and my_errno are in scope

***** (0) *****

ck_errno(void) [ck_errno.c #10]

main(int, char**) [ck_errno.c #16]

cstart() [unknown 0x00026243]

__start() [unknown 0x00020120]

(0) > stop -w errno if *my_errno > 2 #only stop if errno > 2

(0) > cont #now we get an interrupt when the free() fails

(0) > where

***** (0) *****

__free() [unknown 0x000464bc]

free() [unknown 0x000460c6]

main(int, char**) [ck_errno.c #20]

cstart() [unknown 0x00026243]

__start() [unknown 0x00020120]

(0) > print errno

***** (0) *****

 ** `unknown`__free`errno **

errno = 0x00000016

R®

Page 13

Overview - NQS
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 14

What NQS Topics We Can Cover

◆ We will not, cannot, speak to NQS policies
—Concerns should be carried through the proper Sandia

management chain
—There has been a recent change in NQS policies.

◆ We do not have time to discuss how to use NQS.
◆ We can talk about some features/tools that might not

be widely known about NQS.

R®

Page 15

Grabnodes.ksh -- Your Personal
Interactive Partition

◆ The problems:
— interactive partition often full, and often many idle NQS nodes.
— Interactive partition not large enough.

◆ Known solution
— Use NQS to reserve a set of nodes
— Set the NX_DFLT_PART environment variable in a shell to allow me to use

these nodes interactively.

◆ This tool is an automated script for doing what is described in the FAQ.
See http://www.sandia.gov/ASCI/Red/usage/faq.html#ques66

◆ Under development

R®

Page 16

Using NQS Warnlimit for an Orderly
Shutdown before Time Expires

◆ NQS qsub ‘warnlimit’ parameter lets you pick when your nqs job will get
the SIGTERM signal

— This will replace Qsignal!
— By default, NQS sends a SIGTERM signal to every NQS job grace-time-limit

seconds before the job’s time expires. Grace-time-limit is 300 seconds
currently.

— The default SIGTERM handler in cougar terminates the job.
— The qsub command lets you pick when you will get the SIGTERM.
— You can:

 install a SIGTERM handler to catch the signal and set a flag indicating that a
SIGTERM has been received

have your program’s main loop check the flag and, if the flag is set, do a restart
dump and exit cleanly.

— Be sure to leave plenty of time to do the restart files. In R2.7.1, you can
leave <exiting> fyods if your job doesn’t finish writing before the time
expires. (NQS sends a SIGKILL signal when the time is up to force your job
to terminate.) R2.8 (due Nov. 99?) should greatly reduce the <exiting> fyod
problem.

R®

Page 17

Example: Using NQS Warnlimit,
Sample Program

◆ Program which tests to see if SIGTERM has arrived:
janus 120 > cat main.c

#include <stdio.h>

#include <time.h>

#ifdef __PARAGON__

 /*__PARAGON__ is always defined for asci-red*/

 extern int get_sigterm_count(void);

#else

 int get_sigterm_count(void) {return 0;}

#endif

int main() {

 time_t myt;

 myt = time(NULL);

 printf("start time= %s",ctime(&myt));

 while(1) {

 if(get_sigterm_count() > 0) {

 printf("I got a sigterm, go do shutdown now\n");

 break;

 }

 }

 myt = time(NULL);

 printf("endit time= %s",ctime(&myt));

 return 0;

}

R®

Page 18

Example: Using NQS Warnlimit,
Compile Line and qsub Script

◆ Compiling:
janus 121 > pgcc -cougar main.c -o tstc /usr/community/lib/libsigterm.a

main.c:

Linking:

◆ NQS script:
janus 122 > cat getpart

#!/bin/csh

#qsub -re -ro -q intel -lT 5:00,2:00 -lP 1 getpart

#Sample qsub cmd above does:

Submit job to intel queue for max of 5:00 minutes.

Have nqs send the SIGTERM 2:00 minutes into the job.

cd $QSUB_WORKDIR

date

yod -sz 1 tstc

date

◆ Submit to NQS for max time of 5 minutes. Warnlimit after 2 minutes:
janus 123 > qsub -re -ro -q intel -lT 5:00,2:00 -lP 1 getpart

Request 31050.janus submitted to queue: intel.

janus 124 > qstat

===

NQS Version:2 BATCH PIPE REQUESTS on janus

===

 REQUEST NAME OWNER QUEUE PRI NICE CPU MEM STATE

31050.janus getpart pfay intel 50.0 0 300 UNLIM. RUNNING

R®

Page 19

Example: Using NQS Warnlimit,
Output and Results

◆ Results (we got the sigterm 2 minutes after the job started!):
janus /scratch/tmp_6/pfay/sigterm 125 > cat getpart.o31050

Sun Sep 19 23:07:18 MDT 1999

installing sigterm handler

start time= Sun Sep 19 23:07:21 1999

I got a sigterm, go do shutdown now

endit time= Sun Sep 19 23:09:16 1999

Sun Sep 19 23:09:21 MDT 1999

logout

◆ Notes:
— Be sure to leave enough time to shutdown your program.

Qsignal script will be removed since warnlimit is cleaner and more reliable.

R®

Page 20

Overview - OpenMP
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 21

OMP Introduction

1) Usage/Compiling/Linking
2) References and Directives

3) Sample OMP Routine
4) Suggestions for using OMP

5) OMP vs Virtual Nodes

R®

Page 22

OMP Usage/Compiling/Linking

◆ OpenMP or OMP is a shared-memory parallelism
standard so that one can write one source code to
build on many shared memory platforms.

◆ PGI’s compiler (on Janus) implements a subset of the
OpenMP standard.

◆ Use -mp on the link line:
— cif77 -mp -o executable object_files.o

◆ Use -mp when compiling the code that contains the
directives (defined later):
— cif77 -mp -c omp_code.f

◆ Use -mp and/or -Mreentrant on any code that is called
by your OMP subroutine:
— cif77 -mp -c called_by_omp_code.f

◆ There are no “special messages” unless something
goes wrong.

R®

Page 23

OMP Refs. & Directives
http://www.openmp.org

PGI Users Guide: http://www.pgroup.com/ppro_docs/pgiws_ug/pgi30u.htm

◆ PARALLEL ... END PARALLEL !specify parallel region

◆ CRITICAL ... END CRITICAL !allow only 1 cpu at a time in region

◆ MASTER ... END MASTER !allow only the 'main' cpu in region

◆ SINGLE ... END SINGLE !allow one 1 cpu in this region, other skip it

◆ DO ... END DO !parallel do loop

◆ BARRIER !synchronize cpus

◆ DOACROSS !not OMP, SGI-style parallel DO

◆ PARALLEL DO !combines PARALLEL & DO

◆ SECTIONS ... END SECTIONS !split work among cpus by section (non-iterative)

◆ PARALLEL SECTIONS !combines PARALLEL & SECTIONS

◆ ATOMIC !enclose next statement in CRITICAL section

◆ FLUSH !flush variables to memory

◆ THREADPRIVATE !make common blocks private to thread

◆ Run-time Library Routines !omp_get_thread_num(),omp_get_num_threads()

Fortran Directives

R®

Page 24

OMP C Pragmas

◆ #pragma parallel //define parallel region

◆ #pragma critical //only 1 cpu at a time in region

◆ #pragma one processor //only cpu 0 allowed in region

◆ #pragma pfor //parallel for loop

◆ #pragma synchronize //wait for all cpus

◆ Run-time Routines //same as Fortran above

R®

Page 25

OMP Clauses

◆ PRIVATE(list) make 'list' local to thread

◆ SHARED(list) make 'list' global to all threads

◆ DEFAULT(PRIVATE | SHARED | NONE)

— set default scope for variables

◆ FIRSTPRIVATE(list)

— initialize private 'list' variables from existing values

◆ REDUCTION({operator | intrinsic} : list)

— perform ‘operator’ on ‘list’ at exit

◆ COPYIN (list) for threadprivate

◆ IF (scalar_logical_expression)

— execute region in PARALLEL only IF .TRUE.

!$OMP PARALLEL [Clauses]
< Fortran code executed in body of parallel region >
!$OMP END PARALLEL

R®

Page 26

OMP Sample Program,
Compile and Run

 PROGRAM MASTER
 INTEGER omp_get_thread_num()
 INTEGER A(1000), B(1000), C(1000)
 DO I=1, 1000
 B(I) = I
 C(I) = 2 * I
 ENDDO
!$OMP PARALLEL PRIVATE(J)
 J = omp_get_thread_num()
!$OMP DO
 DO I=1, 1000
 A(I) = B(I) + C(I) + 10000 *J;
 ENDDO
!$OMP END DO
!$OMP END PARALLEL

Compile with:
cif90 -mp omp_sample.f90 -o tstf
Run with:
yod -sz 1 -proc 2 tstf

R®

Page 27

OMP Need-to-do’s!

•Check your results (rigorously)
• Cache reuse important for big OMP gains

(see forthcoming example!)
• Watch out for variables that must be shared
• Use ‘default(none)’ clause so that new variables introduced
must be added to private() or shared() list
• Use profiler to see if elapsed time is shorter.
• Use CRITICAL to isolate subroutines if you get incorrect
results.
• Utilities to get variable lists (under development)

rd_debug - list local/global variables
omp_xref - list variables used in the parallel region

R®

Page 28

 Virtual Nodes

◆ There is a project underway between SNL and Intel to
see if a future OS release will support the concept of
“virtual nodes” where each processor is seen as its
own node.

◆ It is too early in the project to determine the outcome of
this effort, and therefore too early for us to give
performance observations.

R®

Page 29

Overview - the Profiler
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 30

Profiler Introduction

1. Features
2. Using the profiler

3. Notes
4. Manual Profiling

R®

Page 31

Profiler Overview

◆ Get cpu time/memory usage/hw counters by routine/line/node/job
◆ Easy to use: compile and link with one of:

-Mprof=func

-Mprof=lines

◆ Run the job as usual.
◆ Easy to get profile results: just run ‘profile’

R®

Page 32

Profiler Features
Cpu time/HW counters

◆ Low overhead: 1-10% overhead depending on features

◆ Precise: not based on sampling

◆ Function-level and basic-block-level profiling (R2.7)

-Mprof=func for function level profiling

-Mprof=lines profiles at the 'basic block' level

◆ CPU time and hardware (HW) counters. (R2.7)

— Always get cpu time for function level-profiling. Elapsed time
and self-time (elapsed minus profiled children).

◆ Optionally specify 2 HW counters to monitor at function level.(R2.7)

setenv PROFILE_COUNTERS PP_FLOPS,PP_RESOURCE_STALLS

◆ Get 'self' and elapsed counter values by routine. (R2.7)

◆ Optionally specify that one of the counters be used for line level
profiling instead of using cpu time. (R2.7)

setenv PROFILE_COUNTERS PP_FLOPS,LINE,PP_RESOURCE_STALLS

◆ List of HW counters with descriptions is on the web:

— http://www.sandia.gov/ASCI/Red/usage/perfeva.htm

R®

Page 33

Profiler Features
Memory usage/Env. variables

◆ Stack and Heap usage (R2.8)
Always get max stack and heap usage. Profiler reports max
used, node and routine that hit the value. You can use the
debugger to stop your application when the high water mark is
hit.

— If you want more memory usage data, you can monitor
malloc/free by setting the environment variable
PROFILE_WATCH_HEAP. See below for more on this feature.

◆ Environment Variables
— PROFILE_TURN_OFF: turns off profiling (R2.8)

— PROFILE_START_WITH_ROUTINE routine_name (R2.7)
Profile only routine_name and its children. Permits timing of
‘solver’ while excluding startup/shutdown.

— PROFILE_COUNTERS hw_counter0[,LINE][,hw_counter1] (R2.7)
Specify HW counters for function profiling (and line-level
profiling optionally). See /usr/include/perfmon.h for list of
counters.

R®

Page 34

Profiler Features
More Env. Variables

◆ Env variables (cont.)
— PROFILE_WATCH_HEAP (R2.8)

If this variable is found, the profiler collects total bytes
malloc’d and free’d by routine, net bytes malloc’d/free’d by
self and children, high heap watermark, and fragments. Can’t
be used with PROFILE_COUNTERS. Use ‘profile -m …’.

— PROFILE_GSYNC_ROUTINE routine_name (R2.8)
Insert global sync()s before and after routine_name. Report
time each node spends waiting at each gsync(). All nodes must
execute routine (due to the gsyncs). This helps determine load
balancing by node. Use ‘profile -g’

— PROFILE_COMMENT comment_string (R2.7)
comment_string will be written into profile data sets.

— PROFILE_DIR directory_name (R2.7)
Write profile datasets to directory_name. Default subdirectory
is ‘pmon.out’.

R®

Page 35

Profiler Features
Call Tree/Ancestor Tree/Load Bal.

◆ Call tree (R2.7)
— For each called routine, show how much of the
cpu time is due to each caller. Use ‘profile
-C …’.

◆ Ancestor tree (R2.8)
— Invert the call tree. Still a ‘beta’ feature.
Use ‘profile -A …’

◆ Load balancing (R2.7)
— Use ‘profile -b …’ get high/low/ave/dev. Cpu
time for each routine by node.

R®

Page 36

Profiler:
Compiling/Running/Getting Results

◆ How to compile
— Use ‘-Mprof=func’ for function level profiling.

— Use ‘-Mprof=lines’ for basic block level
profiling.

If you are compiling with ‘-O2’, then a basic block might be one to
hundreds of source code lines. This option will slow performance maybe
by 2x.

If you compile with ‘-O0’, the basic block is 1 line and performance
will really suffer overheads, but the relative line number performance
should be correct.

◆ How to run
— Run the job as usual. Output files are put in
subdirectory pmon.out in the current directory by
default.

◆ How to get results
— Run ‘profile’ (/usr/bin/profile).

— Run ‘profile -h’ for options.

R®

Page 37

Profiler example
exam1.c - the basics on 1 node

◆ janus> cat exam1.c
void sub2() { sleep(10); }

void sub1() { sub2();sleep(4); }

int main() {

 sub1();

 sleep(2);

 return 0;

}

◆ janus> pgcc -cougar exam1.c -Mprof=func -o tstc
Linking:

◆ janus> yod -sz 1 tstc

R®

Page 38

Profiler example
exam1.c - Profile output

janus> profile -C
 Profile Data Summary

Code: tstc

Last Mod: Mon Sep 13 13:15:33 1999 Size: 392216

Run on: Mon Sep 13 13:27:38 1999 CWD: /Net/usr/home/pfay

nodes: 1 proc mode: 0 elapsed time: 16.00 wall_sec.

Max stack used: 32 Max stack avail: 2097152

Node/Rtn which hit max stack: 0000,sub2

Max heap used: 112800 Node/Rtn which hit max heap: 0000,sub2

Elapsed time= 16.000068 (node secs) for start with routine= main

Routine #calls Time Time Cumu. File

 (sec) (%) Time

--

sub2 1 10.00002 62.500 10.00 exam1.c

sub1 1 4.00002 25.000 14.00 exam1.c

main 1 2.00003 12.500 16.00 exam1.c

R®

Page 39

Profiler Example
exam1.c - Call Tree

janus> profile -C

 Profile Data Summary

...

 Call Tree Data

Routine #calls Time Self Cumu.

 Called by per call Time Time

sub2

 sub1 1 10.00002 10.000 10.000

sub1

 main 1 4.00002 4.000 14.000

main

R®

Page 40

Profiler Example
exam1.c - Running on 2 nodes

Now on 2 nodes:

janus> yod -sz 2 tstc

janus> profile -C

 Profile Data Summary

Code: tstc

Last Mod: Mon Sep 13 13:15:33 1999 Size: 392216

Run on: Mon Sep 13 13:29:00 1999 CWD: /home/pfay/ark/pres/prof_sam

nodes: 2 proc mode: 0 elapsed time: 16.00 wall_sec.

Max stack used: 32 Max stack avail: 2097152

Node/Rtn which hit max stack: 0001,sub2

Max heap used: 902912 Node/Rtn which hit max heap: 0000,sub2

Elapsed time= 32.000122 (node secs) for start with routine= main

Routine #calls Time Time Cumu. File

 (sec) (%) Time

sub2 2 20.00002 62.500 20.00 exam1.c

sub1 2 8.00005 25.000 28.00 exam1.c

main 2 4.00005 12.500 32.00 exam1.c

R®

Page 41

Profiler Example
exam1.c - Call Tree for 2 nodes

And the call tree:

 Call Tree Data

Routine #calls Time Self Cumu.

 Called by per call Time Time

sub2

 sub1 2 10.00001 20.000 20.000

sub1

 main 2 4.00003 8.000 28.000

main

R®

Page 42

Profiler Example
exam2.c - Using the HW Counters to

Gets Flops by Routine

Now for a hw counter example:

janus> setenv PROFILE_COUNTERS PP_FLOPS

janus> cat exam2.c

double x=0.0;

void add_to_x(){ int i; for(i=0;i<100;i++){x +=1.0;}}

void sub2() { add_to_x(); }

void sub1() { sub2();add_to_x(); }

int main() {

 sub1();

 add_to_x();

 return 0;

}

janus> pgcc -cougar exam2.c -Mprof=func -o tstc

R®

Page 43

Profiler Example
exam2.c - Display the flops

janus> yod -sz 1 tstc

janus> profile -p
 Profile Data Summary

Code: tstc

Last Mod:Mon Sep 13 13:4 Size: 392487

Run on: Mon Sep 13 13:4 cwd: /Net/user/home/pfay

nodes: 1 proc mode: 0 elapsed time: 0.000 wall_sec.

Max stack used: 32 Max stack avail: 2097152

Node/Rtn which hit max stack: 0000,add_to_x

Max heap used: 112800 Node/Rtn which hit max heap: 0000,add_to_x

Elapsed time= 5e-05 (node secs) for start with routine= main

Routine #calls Time Time Cumu. PP_FLOPS

 (sec) (%) Time (self)(self+chld)

--

sub2 1 0.00002 32.000 0.00 2 103

main 1 0.00002 30.000 0.00 3 311

add_to_x 3 0.00001 26.000 0.00 303 303

sub1 1 0.00001 12.000 0.00 3 207

R®

Page 44

Profiler & Load Balance
Sample Code

#include "mpi.h"

void wait1(int nsec)

{

 sleep(nsec);

}

void wait2(int nsec,int max)

{

 int shortwait, longwait;

 shortwait = 10;

 longwait = 45;

 if (nsec == 0) {

 sleep(0);

 }else if (nsec == (max-1)) {

 sleep(longwait);

 } else {

 sleep(shortwait);

 }

}

void dummy1()

{

 MPI_Barrier(MPI_COMM_WORLD);

}

void dummy2()

{

 MPI_Barrier(MPI_COMM_WORLD);

}

void main(int argc, char **argv)

{

 int rank,size;

 MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 wait1(rank);

 dummy1();

 wait2(rank,size);

 dummy2();

}

◆ wait1() takes ‘rank’ sec per
node

◆ dummy1 is just a sync

◆ wait2() is more complicated

— node 0 takes essentially
zero time

— node “size-1” takes 45 sec.

— Others take 10

R®

Page 45

First Look with Profiler,
Basic and PROFILE_GSYNC_ROUTINE

◆ Profile on 8 nodes
Routine #calls Time Time Cumu. File

 (sec) (%) Time

dummy2 8 255.00167 61.126 255.00 waittest.c

wait2 8 105.00035 25.169 105.00 waittest.c

dummy1 8 28.00116 6.712 28.00 waittest.c

wait1 8 28.00026 6.712 28.00 waittest.c

main 8 1.17210 0.281 417.18 waittest.c

◆ So it looks like dummy1 and dummy2 are significant, from this
◆ use PROFILE_GSYNC_ROUTINE dummy2

Routine #calls Time Time Cumu. File

 (sec) (%) Time

--

main 8 256.18515 61.407 417.19 waittest.c

wait2 8 105.00037 25.169 105.00 waittest.c

dummy1 8 28.00110 6.712 28.00 waittest.c

wait1 8 28.00026 6.712 28.00 waittest.c

dummy2 8 0.00231 0.001 0.00 waittest.c

R®

Page 46

Looking at wait1() & wait2()

◆ No PROFILE_GSYNC_ROUTINE
◆ run on 64 nodes; profile -b
 nodes Time Calls

--

Routine | Min Max Avg. | Min. Max. Avg.

 | node node sigma | node node sigma

 | frac | frac

--

dummy2 64 0.000 45.000 34.610 1 1 1

 63 0 4.533 63 63 0.0

 0.969 0.000

dummy1 64 0.000 63.000 31.500 1 1 1

 63 0 18.473 63 63 0.0

 0.563 0.000

wait1 64 0.000 63.000 31.500 1 1 1

 0 63 18.473 63 63 0.0

 0.563 0.000

wait2 64 0.000 45.000 10.391 1 1 1

R®

Page 47

Interpreting the Output

◆ All routines are called once per node.
◆ Wait1()

— consumes 0 seconds on node 0, and 63 seconds on node 63
— avg time spent in wait1 over all nodes is 31.5 sec
— width (rms) of distribution of times is 18.47
— only about half of the nodes are within one rms of the avg
so the times for wait1 are all over the place

◆ wait2()
— consumes 0 seconds on node 0, and 45 seconds on node 63
— avg time spent in wait2 over all nodes is 10.391 sec
— width (rms) of distribution of times is 4.53
— 97% of nodes are within one rms of the avg.
so the times for wait2 are clustered around 10 sec, with a couple of outliers

R®

Page 48

Profiler Notes - 2nd CPU and Useful
HW Counters

◆ The 2nd CPU is ‘handled’ by not allowing the 2nd cpu to enter the profiler ‘hook’
routines. If you’ve compiled with OMP (pgcc -cougar -mp …) and you’ve used
proc 2 mode (yod -proc 2 -sz …), the profiler doesn’t collect any data for the 2nd
CPU. You will have to infer that the change in cpu time for your OMP routine is
due to the 2nd processor. The profiler is thread safe.

◆ Useful HW counters:
— PP_FLOPS the number of flops (more or less)

— PP_FP_ASSIST Usually corresponds to number of NANs

— PP_CYCLES_DIV_BUSY cpu cycles that the divide unit was busy.
Divides are slooow. Try to replace with inverse operation.

— PP_MISALIGN_MEM_REF Misaligned memory references can really slow
down code. Unfortunately, many cougar message passing routines
generate misaligned references.

— PP_RESOURCE_STALLS Number of cycles the CPU was blocked waiting
on some resource, usually memory. This is frequently 80-90% of
total cpu time but if a certain loop has a very high stall
count,then perhaps the loop indices can be swapped to access
memory in a more efficient manner.

— PP_BUS_SNOOP_STALL Number of CPU clock cycles that the CPU was
stalled fetching data out of the other CPU’s cache. Useful for
OMP optimization.

— PP_DATA_MEM_REFS The number of loads and stores to registers

R®

Page 49

Manual Profiling - genperf and
perfrep

◆ Beginmflops, etc.. These routines don’t handle the hw counter overflow
properly so if you get more than 2^30 events, the counters will wrap.

◆ There are a set of routines similar to the begin/end/print series that
handle the wrap around properly. These are the genperf routines.

◆ Genperf can be simpler if you just want to collect something like flops
for a loop or a subroutine.

◆ The list of genperf routines are on the web:
http://www.sandia.gov/ASCI/Red/usage/genperf.html

◆ Unlike using the profiler with -Mprof=func, you need to link in
libperfmon.a (so add ‘-lperfmon’ to the link command)

◆ We have a routine to globally block and return the number of flops on all
nodes and processors: beginflopmon_(), endflopmon_(), printflopmon_()

◆ Genperf has cache info routines, flops, branch prediction and much
more.

◆ Perfrep: These routines are designed to iterate over all hw counters,
then generate a table of values. Useful for examining kernels in detail,
or looking at sections of code within an application that is visited many
times with similar data. It does handle overflow and it prints out some
additional computed quantities to assist optimization.

R®

Page 50

Overview -
CTH Profiler Example

◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 51

Another Profile Example -- CTH
◆ Where to start? (Pretend we don’t know the answer)

— Pick representative dataset (efp3d.in, 8 nodes)
— compile with -Mprof=func
— run it.

 Profile Data Summary

Code: /scratch/tmp_4/bhcole/cth/bin/tf/mpicth

Last Mod: Mon Sep 13 09:01:56 1999 Size: 5683742

Run on: Mon Sep 13 09:36:33 1999 CWD: /scratch/tmp_4/bhcole/cth/pr

nodes: 8 proc mode: 0 elapsed time: 233.6 sec.

Routine #calls Time Time Cumu. File

 (sec) (%) Time

--

cthsnd 2412 115.57845 6.893 115.58 mpmpi.F

erpy 4800 100.93678 6.020 234.01 erpy.F

elsg 4880 97.40255 5.809 101.36 elsg.F

ermz 4880 94.42748 5.631 160.52 ermz.F

cthrcv 2412 91.38929 5.450 91.39 mpmpi.F

bdsnde 143664 74.62850 4.451 257.35 bdsnde.F

R®

Page 52

◆ Messaging calls
◆ erpy, elsg. -- know there’s a lot of meat in there. OMP candidate if cache-friendly.
◆ Performance counters:

— PP_DATA_MEM_REFS: all memory references (memory or cache)
— PP_L2_LINES_IN: Number of cache lines (4 doubles or 8 floats each) that had to come in from memory.

◆ Set env. variable PROFILE_COUNTERS PP_DATA_MEM_REFS,PP_L2_LINES_IN

nodes: 8 proc mode: 0 elapsed time: 228.6 sec.

Routine #calls Time Time Cumu. PP_L2_LINES_I PP_DATA_MEM_REF

 (sec) (%) Time (self) (self+chld) (self) (self+chld)

--

cthsnd 2412 116.20015 6.859 116.20 698677 698677 11392211209 11392211209

erpy 4800 104.25719 6.154 238.87 113242733 196167754 13888374735 43360398351

elsg 4880 97.86985 5.777 101.92 99701007 100295819 14885584301 15550245866

ermz 4880 96.59638 5.702 163.15 181399829 274772956 14452980462 23422777400

cthrcv 2412 91.05389 5.374 91.05 272221 272221 9424437784 9424437784

bdsnde 143664 74.73297 4.411 257.60 194261860 495293743 3584845611 18637630975

◆ Compute fraction of data from memory:
(4*PP_L2_LINES_IN)/(PP_DATA_MEM_REFS)

◆ ERPY: 1.8% from memory -- good candidate!!

◆ Go through, put the OMP directives in.

<erpy is rezone calculation in ydirection; one big main loop
over columns. There’s a lot of work in each iteration of the
main loop.>

What do we learn from this?

R®

Page 53

Taking the next step… More OMP
◆ Add OMP Directives to ERPY, debug it, etc.

◆ Run it w/ -proc 2 and profile again:

Profile Data Summary

Code: /scratch/tmp_4/bhcole/cth/bin/tf/mpicth

Last Mod: Mon Sep 13 09:54:45 1999 Size: 5686754

Run on: Mon Sep 13 09:59:12 1999 CWD: /scratch/tmp_4/bhcole/cth/pr

nodes: 8 proc mode: 2 elapsed time: 215.1 sec.

Routine #calls Time Time Cumu. File

 (sec) (%) Time

cthsnd 2412 111.39164 7.117 111.39 mpmpi.F

elsg 4880 97.56098 6.233 101.56 elsg.F

ermz 4880 94.81277 6.057 161.03 ermz.F

cthrcv 2412 86.53987 5.529 86.54 mpmpi.F

bdsnde 143664 74.76909 4.777 253.32 bdsnde.F

erpx 4800 65.66172 4.195 172.18 erpx.F

erpy 4800 58.99054 3.769 128.30 erpy.F

◆ Time spent in ERPY is down from 234.01 node-sec to 128.3
node-sec: a parallel efficiency of 91% for this routine.

◆ Overall elapsed time is not that much impacted from this
single routine (233 sec to 215 sec.)

◆ *BUT* if you press on….

R®

Page 54

CTH w/ “full” OMP utilization

Profile Data Summary

Code: /scratch/tmp_4/bhcole/cth/bin/tf/mpicth

Last Mod: Mon Sep 13 10:24:21 1999 Size: 5557879

Run on: Mon Sep 13 10:34:21 1999 CWD:
/scratch/tmp_4/bhcole/cth/pr

nodes: 8 proc mode: 2 elapsed time: 160.1 sec.

Routine #calls Time Time Cumu. File

 (sec) (%) Time

bdsnde 143664 74.48228 6.664 203.23 bdsnde.F

cthrcv 2412 70.36390 6.296 70.36 mpmpi.F

ermz 4880 61.95159 5.543 98.43 ermz.F

cthsnd 2412 61.16924 5.473 61.17 mpmpi.F

elsg 4880 59.70557 5.342 61.87 elsg.F

erpy 4800 58.56535 5.240 127.19 erpy.F

◆ Run time is now down from 233 to 160 seconds!!!

◆ 1.45x speed-up

R®

Page 55

Overview - IO Cliff Notes
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math libraries

R®

Page 56

Optimizing IO

1. Rules for best IO performance
2. File systems

3. Synchronous IO APIs to async IO
4. Some results

5. Sample sync IO -> async IO

R®

Page 57

Rules for best IO performance

◆ Don't do more IO than necessary
◆ Use a good IO library if available
◆ Don’t read/write files from NFS (your home dir)
◆ Know your IO parameters:

— Reading or writing < 256Kbytes per IO, or using ASCII format? Use UFS
(and get a few MB/s). /ufs…, /scratch/…

— If you can use a request size >= 256 Kbytes and binary file format, then use
PFS (/pfs…).

◆ Only PFS supports file size >= 2GB
◆ Open/closes are expensive; try to keep files open if possible.

R®

Page 58

IO Bottleneck - fyods

◆ Major bottleneck: the fyods.
— All cougar IO goes to the TOS fyod (file yod) which actually does

the IO. The fyod is the link between cougar and the disk.
— Default is 128 nodes/fyod
— sync IO: only 1 sync IO per fyod at a time. Fyod waits till request is

done before starting another request. Most IO requests are
synchronous.
Open/close/seek/fstat/read/write/fopen/fclose/fcntl/fread.

— If you can use PFS, then use the asynchronous IO API's. See the
examples below. Async calls
fwrite/cread/cwrite/iread/iwrite/_iread/_iwrite/
ireadoff/iwriteoff/iodone/iowait/_cread/_cwrite

— Async IO: fyod posts each request and looks for work

R®

Page 59

Rules for Stream IO and Shared File IO

◆ If you are using streams (fread/fwrite)
— consider first using cread/cwrite
— use setvbuf() and get a 1MB buffer.
— fread is sync (and slooow),
— fwrite async. Fast if request size >= 256K or you are using a big

buffer (and not flushing it till it is full)
— If the request size >= buffer size, then bypass the buffer.
— Doing a seek flushes buffer.

◆ If multiple nodes are writing to the same file
— use 'yod -masync ...’, ireadoff() and iwriteoff().

◆ Much more detail available in IO report:
— http://www.sandia.gov/ASCI/Red/usage/ioreport.ps
— some parts out of date

R®

Page 60

File systems -
NFS (slowest) & UFS (still slow)

◆ NFS is very, very slow. This is your home directory and
anything starting with /Net/... Avoid reading/writing to it.

◆ UFS is better.
— Use UFS for small read/write request sizes (< 256Kbytes).
— UFS files are buffered in TOS so if you have small files that you

read/write over and over again, UFS may be better than PFS.
— UFS files must be < 2GBytes.

R®

Page 61

File systems
PFS file system

◆ PFS (Parallel File System) is optimized for:
— Large amounts of data (files can be > 2 Gbytes)
— Big read/write request size

Need at least 256Kbytes
Requests size of 2MByte is near optimal

— Many nodes doing IO simultaneously (if you are using the async IO API)
— PFS is /pfs_grande/

◆ Much more detail available in IO report:
— http://www.sandia.gov/ASCI/Red/usage/ioreport.ps

R®

Page 62

C and Fortran IO APIs

◆ C/C++
— read()/write() are synchronous. Use cread,cwrite instead.
— fread is synchronous, fwrite is asynchronous. Use setvbuf and avoid implicit

buffer flushes (due to seek).

◆ Fortran
— All F77 IO maps to streams with an 8K buffer and is terrible for PFS

F77 read maps to fread and is synchronous
F77 write maps to fwrite and is asynchronous

— F90 read/write maps to streams (same as F77) and is terrible for PFS.
— Use cread/cwrite/ireadoff/iwriteoff instead (only available for f90). All the ‘C’

async IO routines are available to f90. Use the f90 open unit number as the
file descriptor. See ‘man 3f cwrite’

R®

Page 63

IO Results Impacted by Many
Factors

◆ Your results WILL vary (a lot).
—The results below are for a janus with lots of other jobs

running. Many factors impact IO performance including:
what else is running in the service partition
how busy the disks are due to other users
number of fyods
number of service nodes
the API used
the request size used

R®

Page 64

IO Results - C Streams

◆ C streams
64 nodes/36 raids (30 MB/s max each raid)/ 2MB request/non-
dedicated system/1 file per node/pfs_grande
fwrite() without setvbuf: 241 MB/sec (low=70,hi=417)

• Note that since fwrite req_size=2MB, the buffer is bypassed.
Performance is the same as cwrite()

fread() without setvbuf: 2.15 MB/sec (low=1,hi=4.3)
fwrite() with setvbuf: 311MB/sec (low=25, hi=557)
fread() with setvbuf: 54 MB/sec (low=25, hi=104)
Default buffer is 8K (terrible for PFS). Setvbuf buffer is 2MB.

R®

Page 65

IO Results - C
write/read/cwrite/cread

◆ C stdio
64 nodes/36 raids (30 MB/s max each raid)/ 2MB request/non-
dedicated janus/1 file per node/ pfs_grande/multi
write(): 17.0 MB/s
read(): 33 MB/s
cwrite(): 388 MB/s (low=121,hi=611)
cread(): 523 MB/s (low=366,hi=782)

R®

Page 66

IO Results - C Shared File - Without
‘yod -masync’

◆ C and shared file without ‘yod -masync ‘
—128 nodes/6 raids (30 MB/s max each raid)/ 1MB

request/dedicated system/1 shared file
—without the yod -masync parameter: You get about 17 MB/s

independent of API.

R®

Page 67

IO Results: C Shared File
with ‘yod -masync’ and Best API

◆ C and shared file with ‘yod -masync’
—128 nodes/36 raids (30 MB/s max each raid)/ 2MB

request/non-dedicated janus/1 shared file
—with the yod -masync parameter:

eseek/write()/1 fyod: 16.8 MB/s, with 8 fyods: 105 MB/s
eseek/read()/ 1 fyod: 17.2 MB/s, with 8 fyods: 135 MB/s
eseek/cwrite()/1 fyod: 70.2 MB/s, with 8 fyods: 390 MB/s
eseek/cread()/1 fyod: 17.2 MB/s, with 8 fyods: 320 MB/s
iwriteoff()/1 fyod: 71.1 MB/s, with 8 fyods: 550 MB/s
ireadoff()/1 fyod: 125.8 MB/s, with 8 fyods: 720 MB/s

R®

Page 68

IO Results: F77 read/write

◆ F77
—64 nodes/pfs_grande/ 1MB request/non-dedicated system/1

file per node
—All F77 IO maps to streams (and fread is synchronous) and

uses an 8Kbyte buffer (which is a disaster for PFS).
F77 read/write: 1-5 MB on pfs_grande

R®

Page 69

IO Results: F90 using Async IO

◆ F90
—64 nodes/pfs_grande/ 1MB request/non-dedicated system/1

file per node
—F90 can access the async IO library. Use the F90 unit

number as the file descriptor
cwrite ran at 200-500 MB/sec (2 runs)
cread ran at 250-770 MB/sec (2 runs)

R®

Page 70

Sample programs using sync IO
and async IO

◆ The previous results were generated by the sample
programs below.

—streams.c
—stdio.c
—shared.c
—1file_per_node.f90
—shared.f90

◆ Also found on the web at
— http://www.sandia.gov/ASCI/Red/usage/io.html

R®

Page 71

Overview - Math Libs
◆ Sigportals
◆ The Debugger
◆ NQS
◆ OpenMP
◆ The Profiler
◆ CTH Profiler Example
◆ IO Cliff Notes
◆ Math Libraries

R®

Page 72

ASCI Red Math Libraries

What Libraries Exist

Libcsmath

Libwc

Others

R®

Page 73

What Math Libraries Exist

◆ Libcsmath (“Comp-Sci MATH”)
— Level 1, 2, and 3 BLAS
— 1D FFTs
— Partial Man pages in R2.8!

◆ LAPACK
◆ BLACS

— NX (An integer sum bug has been fixed in R2.8)
— MPI

◆ libwc (write-combine Cougar libraries)
◆ ScaLAPACK (Parallel Linear Alegra Package)
◆ PBLAS (Parallel BLAS)

R®

Page 74

LIBCSMATH

◆ Level 1, 2, and 3 BLAS. 1D FFTs
◆ /usr/lib/libcsmath_r.a, /usr/lib/libcsmath_cop.a, /usr/lib/libcsmath.a

— _r: Tries to split the BLAS/FFTs for you using the compiler
— _cop: Tries to split the BLAS/FFTs for you using “cop”
— All versions reentrant except on some level-2,level-3 complex BLAS
— If you do your own parallelism, you will want to explicitly use libcsmath.a.
— The official C interface to the BLAS is included.

◆ Linking with -mp or -Mconcur automatically gives you _r.a.
◆ Dual processor versions are enabled with -proc 2 on the yod line
◆ $TFLOP_XDEV/tflops/lib
◆ See the release notes and upcoming man pages (R2.8)
◆ Works with OSF and Cougar
◆ http://www.cs.utk.edu/~ghenry/distrib

— Can find a linux version here (around 16000 licenses.)

◆ Other interesting kernels:
— copsync() ; xdgemm() ; transposition routines

R®

Page 75

Libcsmath R2.8 enhancements

◆ C = A*B case where the number of columns of C (n) is small.
◆ All DGEMM cases where K is small
◆ K=24 GEMM cases
◆ K>64 GEMM cases
◆ GEMM cases where the number of rows (M) is 2.
◆ More prefetching done on columns of B
◆ Enhancements to other level-3 kernels
◆ Faster handling of smaller BLAS

R®

Page 76

LIBWC

◆ Write Combine Library:
— Using the “write combine” method of accessing memory as opposed to “write

back”. Write combine buffers a single cache line and then writes it directly to
memory, instead of loading it first into cache or keeping it in cache awhile like
write back.

◆ Write Combine library for Cougar
— Takes advantage of new Xeon core features
— Applicable to any memory-write bound kernel.
— Please contact us if you have a use for a tuned kernel of this nature.

◆ Three versions (like libcsmath), but only available on Cougar
— The compiler does not automatically bring in one or another unlike libcsmath

◆ Link with -lwc and you must use -wc on the yod line
◆ libwc versions of: memcpy, dcopy, dzero, memset, memmove, bcopy
◆ Designed for large (1 Mbyte) memory writes.
◆ Other interesting kernels: (these can be used by anything!)

— flush_caches() (flushes the caches on one or both processors)
— use_write_combine() (returns 1 if it is safe to use write combine)
— touch1(array, size_of_array_in_bytes) (C and Fortran versions)

R®

Page 77

LAPACK, PBLAS, ScaLAPACK

◆ /usr/lib/scalapack or $TFLOP_XDEV/tflops/lib/scalapack
— liblapack.a, libtmglib.a, libpblas.a, libscalapack.a, libtools.a, libredist.a

◆ ScaLAPACK and PBLAS depend on BLACS or BLACS_MPI
◆ Sample link lines:

— L/usr/lib/scalapack -ltmglib -llapack
— L/usr/lib/scalapack -lscalapack -lpblas -ltools -lredist
— L/usr/lib/scalapack -lblacsF77init_MPI -lblacs_MPI -lblacsF77init_MPI -lmpi
— L/usr/lib/scalapack -lblacsCinit_MPI -lblacs_MPI -lblacsCinit_MPI -lmpi
— L/usr/lib/scalapack -lblacs -lnx

◆ Recent BLACS Integer sum bug fix found in release R2.8!

R®

Page 78

A new Optimization Tool

◆ Not yet available: only in Alpha on Janus right now.
◆ Optimizes your (F77) subroutine by trying different

optimization strategies and returning to you the
assembly code corresponding to the optimal one.

◆ You must provide a “greg_timer()” and
“greg_initialize()” routines and link against the library.

◆ The routine greg_timer() calls “opcode_routine()”
instead of the target routine to be optimized.

◆ The application runs on Janus for anywhere from a
minute to a day or more depending on input options.

R®

Page 79

Example
 subroutine target_routine_to_optimize(A, B, C, M, N)
 double precision A(*), B(*), C(*), SUM1
 integer M, N, I, J
 sum1 = 0.d0
 do I = 1, M
 do J = 1, N
 sum1 = sum1 + A((I-1)*M+J) + B((I-1)*M+J)
 enddo
 C(I) = sum1
 enddo
 return
 end
/* New auxillary routines */
#define ARRAY_SIZE 1024
int N=ARRAY_SIZE, M=ARRAY_SIZE;
double A[ARRAY_SIZE*ARRAY_SIZE];
double B[ARRAY_SIZE*ARRAY_SIZE];
double C[ARRAY_SIZE];
greg_initialize()
{
 int I;
 for (I = 0 ; I < ARRAY_SIZE*ARRAY_SIZE ; I++) { A[I]=0.0; B[I]=0.0; }
 for (I= 0 ; I< ARRAY_SIZE ; I++) C[I] = (double) I;
 flush_cache();
}
greg_timer()
{
 extern void (*opcode_routine)();
 (*opcode_routine)(A, B, C, &N, &M);
}

