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Part 1: I/O Software Architecture
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Notes on UFS Write

– Fyod allocates a buffer

– Fyod pulls data from the compute node to its
buffer

– Then fyod does an ordinary write()

– Fyod pulls and writes data in 128KB chunks

– Reading is the same, in the opposite direction
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Notes on PFS Write

– Fyod makes a special call: pwrite()
• Just once per user call

– The emulator dispatches requests to one or
more OSF servers

• 4MB per stripe file at a time

– The server pulls data from the compute node

– The server writes data directly to the RAID
• No O. S. buffering

– Read is the same, in the opposite direction
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Summary of PFS

– Parallelism
• For a single compute node, large operations

• Multiple compute nodes in parallel

– Shorter data path => higher bandwidth

– No data buffering

– No size limit of 2GB per file

– Optimal only for large aligned I/O requests
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Summary of UFS

– Optimal for small or unaligned requests

– System buffering via memory mapped files
• This helps, if data is re-used

– Size limit of 2GB per file

– Problem with many nodes, many files, and
multiple fyods:

• Files are buffered on the fyod’s service node

• Can cause thrashing due to paging
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UFS Memory-Mapped Files

– An O. S. buffer cache for UFS file data

– Behaves externally like a static buffer pool

– The buffer persists after a process exits

– Coherent across service nodes
• Single system image

• Behaves like distributed virtual memory
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Part 2:  User API Interfaces
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Unix System Calls

– open, read, write, ...

– Available in C and C++

– Portable

– Non-scalable because they’re synchronous
• fyod is blocked until each call is done

• Through each fyod, the requests are sequential
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C Standard I/O Library

– Uses stdio.h

– fopen, fread, fwrite, ...

– Available in C and C++

– At least as portable as system calls
• Specified by the C language

– Data is buffered in application space
• “stream buffer”
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Implications of stdio buffering

– Better than system calls for small or unaligned
requests -  due to stream buffering

– Bandwidth is limited by copying data to the
stream buffer

• For large requests, fwrite bypasses the buffer

• fread does not bypass the buffer

– Use setbuffer to create a PFS block-sized buffer
for optimal performance to PFS files
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Scalability of stdio

• fwrite can be equivalent to cwrite
– fwrite calls cwrite

– Use a PFS block-sized stream buffer

– Do buffer-sized fwrites to bypass the buffer

• fread is not scalable
– It calls read, not cread

– It does not bypass the stream buffer
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C++ fstream class

– Uses iostream.h and fstream.h

– Portable

– Dependent on C++ implementation

– Probably roughly equivalent to stdio

– It’s not obvious how to control the buffer size
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FORTRAN Runtime Library

– open, read, write, ...
• These are distinct from Unix system calls with

similar names

• E. g., Unix uses file descriptors, not unit numbers

– These functions make stdio calls
• Non-scalable

• You can’t call setbuffer to control the buffer size

– Async I/O calls also available in FORTRAN
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Asynchronous I/O calls

– cread, cwrite, iread, ...

– Available for C, C++, and FORTRAN

– Not portable

– Parallelism at the fyod level
• If multiple compute nodes do a iwrite concurrently,

an fyod can handle them concurrently

• Requests are dispatched to multiple I/O nodes in
parallel
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Asynchronous I/O to UFS

– UFS buffers data on the service node
• Buffering = memory mapped files = demand paging

• Multiple nodes doing async. operations to UFS can
thrash the service node with paging

– To avoid this, use PFS when doing async. I/O
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MUNIX mode

– In MUNIX mode, reads and writes to a file are
atomic

• Standard Unix semantics

• The current default

– Implemented by serializing I/O per file, per
fyod

– The fyod is the Unix process.
• One fyod at a time can read/write a file
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MASYNC Mode

– MASYNC allows parallel access to a file
• Two processes can partially overwrite each other

• A process can read a record that has been partially
updated by another process

– Multiple fyods can read/write a file in parallel

– For a PFS file, allows multiple fyods to access
multiple stripes in parallel
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How can MASYNC mode help performance?

– If there is more than one fyod per application...

– If multiple compute nodes share a file...

– Then MASYNC mode allows concurrent access
by multiple fyods.
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The MASYNC Bug

– If a file written in MASYNC mode is sparse
and has a hole at the end of a PFS stripe, then
the file size is wrong.

– Data can be lost.

– I’ll explain this with a whiteboard.

– This bug will be fixed, but not in R2.3.
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Workarounds to the MASYNC Bug

– Avoid sparse files, fill in the gaps

– Write something to the end of each PFS stripe

– Don’t share files, use a file per node

– Use MUNIX mode


