
1

I/O Software Architecture and
API Interfaces

David Robboy

2

Part 1: I/O Software Architecture

3

Cougar Kernel

Mach Kernel

OSF Server

Service Node
I/O Node

Mach Kernel

OSF Server

RAID

Application

Fyod

Emulator
Library

Library

Software Architecture

Compute Node

4

Mach Kernel

OSF Server

RAID

Mach Kernel

OSF Server

Service Node

Emulator

Library

write(fd, buf, size)

Application

mem. map file

1.

buf

2.

4.

6.

Some time

3.

5.

Writing to UFS: TOS point of view

I/O Node

5

Mach Kernel

OSF Server

RAID

Mach Kernel

OSF Server

RAID

Mach Kernel

OSF Server

RAID

Mach Kernel

OSF Server

Service Node

Emulator

Library

write(fd, buf, size)

Application

1.

2.

6.
3.

5.

Writing to PFS: TOS point of view

4.buf

I/O Nodes

6

Cougar Kernel

Mach Kernel

OSF Server

Mach Kernel

OSF Server

Compute Node
Service Node

I/O Node

RAID

Application

Emulator

A Write Request to UFS

Library

write(fd, buf, size)

write(fd, buf, size)

Fyod

buf

mem. map file

1.

3.

4.

buf

5.

6.

Some time

7.

2.

Library

7

Notes on UFS Write

– Fyod allocates a buffer

– Fyod pulls data from the compute node to its
buffer

– Then fyod does an ordinary write()

– Fyod pulls and writes data in 128KB chunks

– Reading is the same, in the opposite direction

8

Mach Kernel

OSF Server

RAID

Mach Kernel

OSF Server

RAID

Mach Kernel

OSF Server

RAID

Cougar Kernel

Mach Kernel

OSF Server

Service Node

Application

Emulator
Library

A Write Request to PFS

Library

write(fd, buf, size)

pwrite(fd, buf, size)

Fyod

buf

1.

2.

3.

4.

Compute Node

5.

6.

7.

I/O Nodes

9

Notes on PFS Write

– Fyod makes a special call: pwrite()
• Just once per user call

– The emulator dispatches requests to one or
more OSF servers

• 4MB per stripe file at a time

– The server pulls data from the compute node

– The server writes data directly to the RAID
• No O. S. buffering

– Read is the same, in the opposite direction

10

Summary of PFS

– Parallelism
• For a single compute node, large operations

• Multiple compute nodes in parallel

– Shorter data path => higher bandwidth

– No data buffering

– No size limit of 2GB per file

– Optimal only for large aligned I/O requests

11

Summary of UFS

– Optimal for small or unaligned requests

– System buffering via memory mapped files
• This helps, if data is re-used

– Size limit of 2GB per file

– Problem with many nodes, many files, and
multiple fyods:

• Files are buffered on the fyod’s service node

• Can cause thrashing due to paging

12

UFS Memory-Mapped Files

– An O. S. buffer cache for UFS file data

– Behaves externally like a static buffer pool

– The buffer persists after a process exits

– Coherent across service nodes
• Single system image

• Behaves like distributed virtual memory

13

Part 2: User API Interfaces

14

Unix System Calls

– open, read, write, ...

– Available in C and C++

– Portable

– Non-scalable because they’re synchronous
• fyod is blocked until each call is done

• Through each fyod, the requests are sequential

15

C Standard I/O Library

– Uses stdio.h

– fopen, fread, fwrite, ...

– Available in C and C++

– At least as portable as system calls
• Specified by the C language

– Data is buffered in application space
• “stream buffer”

16

Implications of stdio buffering

– Better than system calls for small or unaligned
requests - due to stream buffering

– Bandwidth is limited by copying data to the
stream buffer

• For large requests, fwrite bypasses the buffer

• fread does not bypass the buffer

– Use setbuffer to create a PFS block-sized buffer
for optimal performance to PFS files

17

Scalability of stdio

• fwrite can be equivalent to cwrite
– fwrite calls cwrite

– Use a PFS block-sized stream buffer

– Do buffer-sized fwrites to bypass the buffer

• fread is not scalable
– It calls read, not cread

– It does not bypass the stream buffer

18

C++ fstream class

– Uses iostream.h and fstream.h

– Portable

– Dependent on C++ implementation

– Probably roughly equivalent to stdio

– It’s not obvious how to control the buffer size

19

FORTRAN Runtime Library

– open, read, write, ...
• These are distinct from Unix system calls with

similar names

• E. g., Unix uses file descriptors, not unit numbers

– These functions make stdio calls
• Non-scalable

• You can’t call setbuffer to control the buffer size

– Async I/O calls also available in FORTRAN

20

Asynchronous I/O calls

– cread, cwrite, iread, ...

– Available for C, C++, and FORTRAN

– Not portable

– Parallelism at the fyod level
• If multiple compute nodes do a iwrite concurrently,

an fyod can handle them concurrently

• Requests are dispatched to multiple I/O nodes in
parallel

21

Asynchronous I/O to UFS

– UFS buffers data on the service node
• Buffering = memory mapped files = demand paging

• Multiple nodes doing async. operations to UFS can
thrash the service node with paging

– To avoid this, use PFS when doing async. I/O

22

MUNIX mode

– In MUNIX mode, reads and writes to a file are
atomic

• Standard Unix semantics

• The current default

– Implemented by serializing I/O per file, per
fyod

– The fyod is the Unix process.
• One fyod at a time can read/write a file

23

MASYNC Mode

– MASYNC allows parallel access to a file
• Two processes can partially overwrite each other

• A process can read a record that has been partially
updated by another process

– Multiple fyods can read/write a file in parallel

– For a PFS file, allows multiple fyods to access
multiple stripes in parallel

24

How can MASYNC mode help performance?

– If there is more than one fyod per application...

– If multiple compute nodes share a file...

– Then MASYNC mode allows concurrent access
by multiple fyods.

25

The MASYNC Bug

– If a file written in MASYNC mode is sparse
and has a hole at the end of a PFS stripe, then
the file size is wrong.

– Data can be lost.

– I’ll explain this with a whiteboard.

– This bug will be fixed, but not in R2.3.

26

Workarounds to the MASYNC Bug

– Avoid sparse files, fill in the gaps

– Write something to the end of each PFS stripe

– Don’t share files, use a file per node

– Use MUNIX mode

