/O Software Architecture and
APl Interfaces

David Robboy

Part 1: |/O Software Architecture

Softwar e Architecture

4)

Application 4 I

Fyod

o /

e 2

e 2

OSF Server
Cougar Kerne \ J (
~ g OSF Server
Mach Kernd L
Mach Kernd
Compute Node
Service Node

[/O Node

Writing to UFS: TOS point of view

1.

—
write(fd, buf, siz@

=
e

Emulator

OSF Serven_
L N
4 \ \
~——
Mach Kernd
Service Node

Sometime

~

—X

OSF Server

\f'

Mach Kernd

/O Node

Writing to PFS: TOS point of view

write(fd, buf, siz@

1.
_—
[=
Application

OSF Server_

Mach Kernd

Service Node

/O Nodes

™~
~
X
OSF Server
Mach Kernd

| .

| .

A Write Request to UFS

4.

_—

write(fd, buf, siz@

(=
Fyod
buf

.

Cougar Kerné

Compute Node

1.
-
write(fd, buf, siz@
(=
Application
3.
buf
—
-~ 2.
‘2

mem. map file

1!

N
J/

OSF Server

Ve
AN

Mach Kernd

»

Service Node

)
S Sometime
‘\

*

. 5-

OSF Server

Mach Kernd

[/O Node

Notes on UFS Write

— Fyod allocates a buffer

— Fyod pulls data from the compute node to its
puffer

— Then fyod does an ordinary write()
— Fyod pulls and writes data in 128K B chunks
— Reading is the same, in the opposite direction

A Write Request to PFS

1.
—
write(fd, buf, sz@ 3
-
(= pwrite(fd, buf, size)j

Application (y
Fyod

- . I~
T 2
v A Library 3 \

/ /s

s 4,
| - - Cemtator |~y [s *
N =

Ve

OSF Server \

Cougar Kernel \ (N > ()
- / ~ - OSF Server
Mach Kerne .T —)
Mach Kerne
Compute Node >
Service Node >

/O Nodes

Notes on PFS Write

— Fyod makes a special call: pwrite()
e Just once per user call

— The emulator dispatches requests to one or
more OSF servers

e 4AMB per stripefileat atime
— The server pulls data from the compute node

— The server writes data directly to the RAID
* No O. S. buffering

— Read is the same, in the opposite direction

Summary of PFS

— Pardldism

 For asingle compute node, large operations
e Multiple compute nodes in parallel

— Shorter data path => higher bandwidth

— No data buffering

— No size limit of 2GB per file

— Optimal only for large aligned 1/O requests

10

Summary of UFS

— Optimal for small or unaligned requests
— System buffering via memory mapped files
e Thishelps, if dataisre-used
— Size limit of 2GB per file
— Problem with many nodes, many files, and
multiple fyods:

 Files are buffered on the fyod' s service node
 Can cause thrashing due to paging

11

UFS Memory-Mapped Files

— An O. S. buffer cache for UFSfile data
— Behaves externally like a static buffer pool
— The buffer persists after a process exits

— Coherent across service nodes
« Single system image
» Behaves like distributed virtual memory

12

Part 2: User APl Interfaces

13

Unix System Calls

— open, read, write, ...
— Avalablein C and C++
— Portable

— Non-scalable because they’ re synchronous
o fyod is blocked until each call isdone
» Through each fyod, the requests are sequential

14

C Standard 1/O Library

— Uses stdio.h

— fopen, fread, fwrite, ...

— Avallablein C and C++

— At least as portable as system calls
» Specified by the C language

— Datais buffered in application space
o “stream buffer”

15

lmplications of stdio buffering

— Better than system calls for small or unaligned
requests - due to stream buffering

— Bandwidth islimited by copying datato the
stream buffer
e For large requests, fwrite bypasses the buffer
o fread does not bypass the buffer

— Use setbuffer to create a PFS block-sized buffer
for optimal performance to PFSfiles

16

Scalability of stdio

 fwrite can be equivalent to cwrite

— fwrite calls cwrite

— Use a PFS block-sized stream buffer

— Do buffer-sized fwrites to bypass the buffer
 fread isnot scalable

— It callsread, not cread

— It does not bypass the stream buffer

17

C++ fstream class

— Uses iostream.h and fstream.h

Portable
Dependent on C++ implementation
Probably roughly equivalent to stdio

t' s not obvious how to control the buffer size

18

FORTRAN Runtime Library

— open, read, write, ...

* These are distinct from Unix system calls with
similar names

e E. g., Unix usesfile descriptors, not unit numbers

— These functions make stdio calls
 Non-scalable
 You can't cal sethuffer to control the buffer size

— Async |/O calls also available in FORTRAN

19

Asynchronous |/O calls

— cread, cwrite, iread, ...
— Avallablefor C, C++, and FORTRAN
— Not portable

— Parallelism at the fyod level

o If multiple compute nodes do aiwrite concurrently,
an fyod can handle them concurrently

* Requests are dispatched to multiple 1/0 nodes in
paralle

20

Asynchronous I/O to UFS

— UFS buffers data on the service node
« Buffering = memory mapped files = demand paging

» Multiple nodes doing async. operations to UFS can
thrash the service node with paging

— To avoid this, use PFS when doing async. |/O

21

MUNIX mode

— In MUNIX mode, reads and writesto afile are
atomic

e Standard Unix semantics
e The current default

— Implemented by serializing |/O per file, per
fyod
— The fyod is the Unix process.
* Onefyod at atime can read/write afile

22

MASYNC Mode

— MASYNC alows parallel accessto afile

e Two processes can partially overwrite each other

A process can read arecord that has been partially
updated by another process

— Multiple fyods can read/write afile in parallel

— For aPFSfile, allows multiple fyods to access
multiple stripesin paralléel

23

How can MASY NC mode help performance?

— If there Is more than one fyod per application...
— If multiple compute nodes share afile...

— Then MASY NC mode alows concurrent access
by multiple fyods.

24

The MASYNC Bug

— If afilewritten in MASY NC mode is sparse
and has a hole at the end of a PFS stripe, then
the file size Iswrong.

— Data can be lost.
— I’ll explain this with awhiteboard.
— This bug will be fixed, but not in R2.3.

25

Workarounds to the MASY NC Bug

— Avoid sparse files, fill in the gaps

— Write something to the end of each PFS stripe
— Don’'t sharefiles, use afile per node

— Use MUNIX mode

26

