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Obijective

- Accurate determination of the phase diagram of carbon
— Solid-liquid phase boundaries -> melting lines
— Relevant solid-solid phase boundaries

* Unified description

— Entirely from first-principles based methods with
reliable approximations and computational
techniques

- Construction of a multiphase equation of state model
— Broad range of validity
— Appropriate for hydrodynamic simulations

- Comparison with experiments
— Ongoing laser-shock experiments at Omega
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Why study carbon at extreme conditions?

e Astrophysics and planetary science
* High pressure research with diamond anvil cells

*ICF experiments at the National Ignition Facility

Physics and Advanced Technologies /¥ -/




Diamond capsules for ICF experiments on NIF
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Diamond capsules for ICF experiments on NIF
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- Ablator material candidates
— Polyamide plastic
— Beryllium
— Carbon (diamond)

- Capsule design needs to be tested by hydrodynamic
simulations, which require accurate (and smooth)
multiphase equation of state tables
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Our main computational tool is first-principles molecular
dynamics

ih & W({r,s L R}t = HW(r,s) R}

. Electronic Structure i
: . Molecular Dynamics
(Schroedinger Equation Newtonian Equations for lons
- for Electrons) ( q )

Density Functional
Theory

and » ¢
Quantum Monte

Carlo

. " .
@ is the quantum mechanical Time evolution of ions:
ground state energy of N (10*-10° time steps)
interacting electrons in the -
field of ions MR, =F,

F ==V, ({R\(1)})

Predict the properties of low-Z materials
under extreme conditions

o Structural and dynamical properties
* Phase boundaries
e Transport properties
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Our main computational tool is first-principles molecular
dynamics
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@ is the quantum mechanical Time evolution of ions:
ground state energy of N (10*-10° time steps)
interacting electrons in the -
field of ions MR, =F,

F, ==V, © ({R(t)})

Predict the properties of low-Z materials “First-principles” methods:

under extreme conditions Do not contain empirical parameters
» Structural and dynamical properties Do not require experimental input
e Phase boundaries Are derived from the fundamental
e Transport properties laws of quantum mechanics
Involve approximations
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We have used the first-principles molecular
dynamics code Qbox (F. Gygi and E. Draeger)

-

Qbox, a C++/MPI implementation of first-principles molecular
dynamics for massively parallel computers

- Complete rewrite (not a legacy code) specifically designed
for massively parallel computers

- Parallelized over plane waves and electronic states
- Parallel linear algebra via ScaLAPACK and BLACS
- Fast fourier transforms via FFTW

* Norm conserving pseudopotentials

- Born-Oppenheimer or Car-Parrinello dynamics
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Qbox has been successfully ported to all of the Labs
parallel computing platforms, including BG/L

* Test problem: 1000 molybdenum atoms
- 12 valence electrons/atom: 12,000 electrons
* 112 Ryd. cutoff: 33 million plane waves

- Norm conserving nonlocal pseudopotential with 32 semilocal
projectors/atom

- Recent implementation of k-point sampling

T T T T T

@-@® 1000 Mo atoms, 1 k-point
® 1000 Mo atoms, 4 k-points
® 1000 Mo atoms, 8 k-points

2006 Gordon Bell Prize

N PR B B
16384 32768 49152 65536
number of nodes
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History of first-principles MD performance

1000000

100000

10000

1000

100

10

Qbox/BGL

CPMD/BGL

Qbox/BGL &

Paratec/ES =

GP/ASCI Blue

CP/INEC SX/4 4

GP/NEC SX/3

1995

2000

2005 2010

Physics and Advanced Technologies ¥V -

The performance of
first-principles MD
codes has doubled
every ~8 months
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The determination of phase boundaries

» Single-phase “heat-until-it-melts” approaches
are not appropriate for locating
equilibriumphase boundaries

— Superheating/cooling

 Single-phase free-energy matching
+ Precise transition

+ Good for low-T solid-solid phase
boundaries

— Difficult for solid-liquid phase boundaries

* Two-phase coexistence simulations
+ Computationally efficient
+ Good for solid-liquid phase boundaries

— Not applicable for solid-solid phase
boundaries

Temperature (K)

Pressure (Mbar)
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Two phase simulation approach for determining melting

temperatures

Starting configuration

Final configurations

e Constant pressure MD for
a set of (T,P)

o Stability of the solid and
liquid phases directly
compared
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The melting curve of diamond from two-phase simulations
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 First-principles two-phase simulations have been used
to map out the diamond melting curve

e Maximum at P ~ 4.5 Mbar
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The melting curve of diamond from two-phase simulations
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 First-principles two-phase simulations have been used
to map out the diamond melting curve

e Maximum at P ~ 4.5 Mbar
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The melting curve of diamond from two-phase simulations
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 We have carried out similar simulations with a BC8 solid
structure

* BC8 also has a maximum

 Triple point located at P = 8.7 Mbar and T = 7500 K
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The melting curve of diamond from two-phase simulations
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The melting curve of diamond from two-phase simulations
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 Low T boundary between diamond and BC8 determined
by free energy matching G.....o(P:T) = Ggcs(P;T)

e Quasiharmonic approximation (ﬁwqa)2 elwaa /KT

CV:Z
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The melting curve of diamond from two-phase simulations
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» Hugoniot calculations indicate shock melting between
P =6.7 to 10.5 Mbar and T ~ 8000 K.

 Diamond gap remains open until melting

» Good agreement with laser-shock experiments
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The melting curve of diamond from two-phase simulations
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» Hugoniot calculations indicate shock melting between
P =6.7 to 10.5 Mbar and T ~ 8000 K.

 Diamond gap remains open until melting

» Good agreement with laser-shock experiments
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The melting curve of diamond from two-phase simulations
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» Hugoniot calculations indicate shock melting between
P =6.7 to 10.5 Mbar and T ~ 8000 K.

 Diamond gap remains open until melting

» Good agreement with laser-shock experiments
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The melting curve of diamond from two-phase simulations
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— Liquid Fraction (VTR)

» Hugoniot calculations indicate shock melting between
P =6.7 to 10.5 Mbar and T ~ 8000 K.

 Diamond gap remains open until melting

Shock Speed (um/ns)

» Good agreement with laser-shock experiments Bradley, et al. PRL 2004
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Comparison with recent laser-shock experiments

4 Laser-shock exp.
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» Hugoniot calculations indicate shock melting between
P =6.7 to 10.5 Mbar and T ~ 8000 K.

» Simulations in good agreement with recent laser-shock
measurements (Jon Eggert, et al. 2007)
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We are working to develop accurate EOS tables for
materials relevant to ICF capsule designs

Ab initio simulation data

+ Phase boundaries

+ Free-energy calculations

+ Transport properties

+ No fitting or experimental
input required

+ Good transferability

— Computationally expensive
— Limited range:
# atoms < 1000’s
timescales < 100 ps
T=0-10eV
p=0.01-6p,

Initial table has been generated
with this process (LEOS67) and is
currently being used in LASNEX

EOS Models
Accurate and
consistent single-
phase free-energy
models

LI

s

—

flnfernolPurgatorio
P. Sterne
+ Much wider range of
applicability
+ Computationally
inexpensive
+ Smooth matching to

plasma limit

y8ics an

Experimental
verification
and input

EOS Table
Generation

!

ICF Hydrocodes
 LASNEX
« HYDRA

1

Strength models
D. Orlikowski
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Analytic equation of state construction

*Solids phases (Diamond and BC8)
o F(V!T) = EO(V) + FDebye(v!T) + Fanh(v!T)

— Harmonic approximation at low temperatures

— Anharmonic corrections at higher temperatures

— For diamond we find that F,_ (V,T) ~ aT?

anh
e Liquid
o F(V’T) = EO(V) = FDebye(v’T) wr Felec(v’T)

— Solid-like free energy (approximation validated by direct
first-principles simulations)

— Gibbs free energy constrained to match the melting curve
and first-principles liquid simulation [E(V,T) and P(V,T)]
data

e Connection with a global EOS model
— Liquid EOS smoothly matched with QEOS
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What have you done for me lately?

* 144-processors of ASCI Blue, 1 iteration took 42 sec. (in 1999)
* 128-processors of ASC Purple, 1 iteration takes 1 sec

e Transition from computing “points” to “curves”
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What have you done for me lately?

* 144-processors of ASCI Blue, 1 iteration took 42 sec. (in 1999)
* 128-processors of ASC Purple, 1 iteration takes 1 sec

e Transition from computing “points” to “curves”

Now possible to assemble highly accurate
first-principles based EOS tables for select
materials
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What are you doing for me tomorrow?

e The current LEOS database is based on QEOS

e Cold-curve, electron-thermal via modified
Thomas-Fermi and ion-thermal via Debye-
Gruneisen

 Fast, smooth, many parameters to adjust

« Work underway at LLNL (P. Sterne) to rebuild the
LEOS tables with electron-thermal component
based on Purgatorio calculations (ion in jellium
model)

* In the future, we will be able to routinely assemble
EOS tables based entirely on first-principles
methods

e Complex mixtures

e Beyond DFT

e Realistic error bars

e Transport properties
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What are you doing for me tomorrow?

e The current LEOS database is based on QEOS

e Cold-curve, electron-thermal via modified
Thomas-Fermi and ion-thermal via Debye-
Gruneisen

] Phase diagram of
 Fast, smooth, many parameters to adjust lithium hgdride l

 Work underway at LLNL (P. Sterne) to rebuild the 3500

3000

LEOS tables with electron-thermal component 3500,
based on Purgatorio calculations (ion in jellium gfggg:
model) § 100
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e In the future, we will be able to routinely assemble o by 7o S0 oo
EOS tables based entirely on first-principles
methods

e Complex mixtures
e Beyond DFT
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