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Abstract. Let us present the subjects of hyperbolic geometry and complex

numbers using hyperbolas, and compare this geodesic model to an Euler’s

formula complex numbers model seen in a Poincaré disk or a Mobius band.
Using that frequency, a transformation of accelerations is made on harmonic

motion by taking the the derivatives of a cyclic periodic wave velocity. Then a
simple representation for the non-Euclidean angle of parallelism can be applied

to the astronomical parallax within a hypothesis of the near-universe space and

time. We make the electromagnetic spectrum consistent with variant, rather
than constant, radian/second wave velocities on both astronomic and quantum

scales. The relativistic Lorentz transformation is changed for this geometry.

Distance and time are expressed algebraically.

1. Horizontal, Vertical, Diagonal Hyperbolas and the Circle

Trigonometry originates with Hippocrates (470–410 B.C.) of Chios, Euclid’s El-
ements (325–265 B.C.), Archimedes (287–212 B.C.), Heron (60 A.D.), Ptolemy’s
Almagest (178) all of Alexandria, and Al Battani (Albatenius) (877-918) of Iraq,
among others. Girolamo Cardano (1501–1576), J. Wallis (1685), L. Euler (1707–
1783), Caspar Wessel (1797), and J. R. Argand (1806) introduced complex numbers,
motivated by solving polynomials with equations such as

(1) z = reiθ = r cos θ + ir sin θ = x+ iy

and the modulus, or length of z

|z| =
√
x2 + y2

[1] [18] [20]. In the 19th century, the trigonometry required for measuring a circle
potentially changed with the horizontal hyperbola of Christof Gudermann (1798–
1852) and the vertical hyperbola of Nikolai Ivanovic Lobacevskii (1792–1856) [7,
pp. 376–377] [16, pp. 11–45] and Janos Bolyai (1802–1860) [4].

The subject of Euclidean trigonometry prefers to use x = r cos θ and y = r sin θ.
However, this position is not compatible with hyperbolic trigonometry. Figure 1
shows the potential advantages of using hyperbolic trigonometry. Figure 1 (top)
illustrates the horizontal hyperbola of Christof Gudermann, x2 − y2 = 1 [6, pp.
312–313] [3, p. 269]

x = secψ = cosh sinh−1 y = cothα y = tanψ = sinh sinh−1 y = cschα(2)
1
x

= cosψ = sech sinh−1 y = tanhα
1
y

= cotψ = csch sinh−1 y = sinhα

x

y
= cscψ = coth sinh−1 y = coshα

y

x
= sinψ = tanh sinh−1 y = sechα.
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The angle ψ is called the gudermannian and defined for 0 ≤ ψ ≤ π
2 . When

the frequency f cycles/second = y +
√
y2 + 1, for example, rational numbers

sech ln f = sech sinh−1 y = tanhα are made from α = ln f+1
f−1 , therefore ψ =

cos−1 sech ln f = cos−1 tanhα. Time T = 1/f is the fraction of a second per cycle.
All of the equations herein are geodesics.

Figure 1 (bottom) illustrates the vertical hyperbola of Nikolai Ivanovic Lobacevskii,
y2 − x2 = 1 [16, p. 41] [19, pp. 414, 421–423, 434] [7, pp. 376–377],

x = cot θ = sinh sinh−1 x = cschα y = csc θ = cosh sinh−1 x = cothα(3)
1
x

= tan θ = csch sinh−1 x = sinhα
1
y

= sin θ = sech sinh−1 x = tanhα

x

y
= cos θ = tanh sinh−1 x = sechα

y

x
= sec θ = coth sinh−1 x = coshα.

We relate angles ψ = π
2 − θ since cotψ = sinhα = tan θ = cot(π2 − θ). The set of

equation (3) uses frequency

esinh−1 x = f = x+
√
x2 + 1 = cot θ +

√
(cot θ)2 + 1 = cot θ + csc θ

= sinh ln f + cosh ln f = x+ y

with x ≥ 0 and sinh−1 x = ln |x+
√
x2 + 1| = −

∫
csc θdθ. The derivative d

dx sinh−1 u =
u′√
u2+1

= 1√
x2+1

= 1
csc θ = sin θ is so when u = x and d

dxx = 1.
In fact, hyperbolic trigonometry replaces the Euclidean Euler equation (1), where

z = a+ ib, z̄ = a− ib, and |z| =
√
a2 + b2 =

√
zz̄, with

z = r(secψ + i tanψ) = r(x+ iy) |z| = r
√

(secψ)2 + (tanψ)2 = r
√
x2 + y2

(4)

z = reiψ = r(cosψ + i sinψ) = r

(
1
x

+ i
y

x

)
|z| = r

√
(cosψ)2 + (sinψ)2 = r

√(
1
x

)2

+
(y
x

)2

= r1

= r
√

(secψ)2 − (tanψ)2 = r
√
x2 − y2 = r1

z = r(cot θ + i csc θ) = r(x+ iy) |z| = r
√

(csc θ)2 + (cot θ)2 = r
√
y2 + x2

z = reiθ = r(cos θ + i sin θ) = r

(
x

y
+ i

1
y

)
|z| = r

√
(cos θ)2 + (sin θ)2 = r

√(
x

y

)2

+
(

1
y

)2

= r1

= r
√

(csc θ)2 − (cot θ)2 = r
√
y2 − x2 = r1.

Since a = r cot θ = rx and b = r csc θ = ry, we thus have the primary complex
number, a+bi = r cot θ+(r csc θ)i = r(cot θ+ i csc θ) = r(x+ iy). The length of the
vector z = (a, b) = a + ib is denoted |z| =

√
zz̄ =

√
(a+ ib)(a− ib) =

√
a2 + b2 =

r
√
x2 + y2 = r

√
y2 + x2 = r

√
(csc θ)2 + (cot θ)2. r and |z| are different. The vector

makes an angle ϑ = tan−1 b
a , not θ = cos−1 x

y , with the x-axis. Example: x = 4,

therefore reiθ = r( 4√
17

+ i 1√
17

), |z| = r
√

(4 + i
√

17)(4− i
√

17) = r
√

33.
A similar treatment can be made for the diagonal hyperbola, 2xy = 1, with coor-

dinate angles x = 1
f
√

2
and y = f

√
2

2 , where−2(cosh ln f)(sinh ln f) = − sinh 2 ln f =
x2 − y2.
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x2 – y2 = 1

y2 – x2 = 1

x

x

x
(1/x)2 + (y/x)2 = 1

1/x

1/y

x/y
y/x

yy

x

1/x1/y

x/y

y/x

y

y

(x/y)2 + (1/y)2 = 1

ψ

θ

Figure 1. Horizontal(top), vertical(bottom) hyperbola and circle
coordinate angles as defined in hyperbolic trigonometry

;
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2. Roots, products, moduli, de Moivre’s, exponential and
logarithmic functions

This section is introductory material typical of complex numbers, yet modified
for hyperbolic trigonometry. One use of complex numbers is to take square roots
of negative real numbers [18, pp. 6–7, 12–13, 27–34, 41–42] [1, pp. 3–13]. First, we
wish to prove this by showing that u2 = z, where z = a+ ib and u = r(x+ iy) are
both complex numbers. Then

u2 = a+ ib

= [r(x+ iy)][r(x+ iy)] = r2[(x2 − y2) + i2xy]

= r2[((cosh ln f)2 − (sinh ln f)2) + i2(cosh ln f)(sinh ln f)]

= r2[((secψ)2 − (tanψ)2) + i2(secψ)(tanψ)]

= r2
[
1 + i2

(
f2 + 1

2f

)(
f2 − 1

2f

)]
= r2

1− i

( 1
f
√

2

)2

−

(
f
√

2
2

)2


= r2
[
1 + i

f2 − f−2

2

]
= r2[1 + i sinh 2 ln f ]

simultaneously solves the horizontal and diagonal hyperbolas. Hence a = r and

b = r sinh 2 ln f = r2
(
f2+1
2f

)(
f2−1
2f

)
= −r

[(
1

f
√

2

)2

−
(
f
√

2
2

)2
]

= r f
2−f−2

2 . Here

we find a complementary double-angle formula [r(x+ iy)]2 = [r(cot θ + i csc θ)]2 =
[r(sinh ln f + i cosh ln f)]2 = r2(−1 + i sinh 2 ln f).

We see the double-angle when we consider z = a+ ib and v = r(cosψ + i sinψ)
for v2 = z

v2 = a+ ib

= [r(cosψ + i sinψ)][(r(cosψ + i sinψ)]

= r2[[(cosψ)2 − (sinψ)2] + [i2(cosψ)(sinψ)]]

= r2[[(sech ln f)2 − (tanh ln f)2] + [i2(sech ln f)(tanh ln f)]]

= r2

[[(
1
x

)2

−
(y
x

)2
]

+
[
i2
(

1
x

)(y
x

)]]

= r2

[[(
2f

f2 + 1

)2

−
(
f2 − 1
f2 + 1

)2
]

+
[
i2
(

2f
f2 + 1

)(
f2 − 1
f2 + 1

)]]
= r2[cos 2ψ + i sin 2ψ].
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For we now compute

r2[1]2 = r2

[(
1
x

)2

+
(y
x

)2
]2

= r2

[( 1
x

)2

−
(y
x

)2
]2

+
[
2
(

1
x

)(y
x

)]2 = r2(x2 − y2)2

(5)

r2[(cosψ)2 + (sinψ)2]2 = r2[[(cosψ)2 − (sinψ)2]2 + [2(cosψ)(sinψ)]2]

r2[(sech ln f)2 + (tanh ln f)2]2 = r2[[(sech ln f)2 − (tanh ln f)2]2 + [2(sech ln f)(tanh ln f)]2]

= r2

[( 2f
f2 + 1

)2

−
(
f2 − 1
f2 + 1

)2
]2

+
[
2
(

2f
ρ2 + 1

)(
f2 − 1
f2 + 1

)]2
= r2[[cos 2ψ]2 + [sin 2ψ]2]

= a2 + b2.

Hence r
[(

1
x

)2 +
(
y
x

)2] =
√
a2 + b2, with a = r cos 2ψ = r

[(
2f
f2+1

)2

−
(
f2−1
f2+1

)2
]

and b = r sin 2ψ = r
[
2
(

2f
f2+1

)(
f2−1
f2+1

)]
. So r( 1

x )2 = (a+
√
a2 + b2)/2 and r( yx )2 =

(−a+
√
a2 + b2)/2. If we let

√
( 1
x )2 =

√
(a+

√
a2 + b2)/2r and

√
( yx )2

=
√

(−a+
√
a2 + b2)/2r, we conclude that the equation v2 = z has the solution

r
√

( 1
x )2+r

√
( yx )2i. The quadratic equation az2+bz+c = 0 for complex numbers a,

b, c has solutions z = (−b+
√
b2 − 4ac)/2a, where

√
w is the square root of complex

number w. Also hence r(x2 − y2) =
√
a2 + b2. We can now expand the modulus

squared |z|2 = r2(x2−y2) = r2(1) = r2(x+y)(x−y) = a2+b2 = (a+ib)(a−ib) = zz̄.
When the polar coordinate representation is z = r cosψ + ir sinψ = r 1

x + ir yx =

a+ib, we have the polar modulus |z| = r
√

( 1
x )2 + ( yx )2 = r

√
x2 − y2 = |r 1

x+ir yx | =
|a + ib| =

√
a2 + b2 [1, pp. 12–13]. When the hyperbolic form is z = r(secψ +

i tanψ) = r(x + iy) = a + ib we have the hyperbolic modulus |z| = r
√
x2 + y2 =

r
√

(secψ)2 + (tanψ)2 = |rx + iry| = |a + ib| =
√
a2 + b2 as in equations (5) and

(4). This differs from the conventional |z| =
√
x2 + y2 =

√
(r cos θ)2 + (r sin θ)2

[20].
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We calculate the product z2 = [r(cos θ+ i sin θ)]2 = [r(tanh ln f + i sech ln f)]2 =
r2(((cos θ)(cos θ)−(sin θ)(sin θ))+i((cos θ)(sin θ)+(cos θ)(sin θ))) = r2(((tanh ln f)2−
(sech ln f)2) + i2(tanh ln f)(sech ln f)) = r2(cos 2θ+ i sin 2θ) therefore we know the
products and roots of de Moivre’s formula zn = rn(cosnθ+i sinnθ). The hyperbolic
analogue is [1, pp. 15–16]

zn = rn(cosnψ + i sinnψ) = r(cos κ + i sin κ)

= rn(cos(κ + k2π) + i sin(κ + k2π)) = rn(sech ln f + i tanh ln f)n

zk = r1/n(cos(
κ
n

+
k2π
n

) + i sin(
κ
n

+
k2π
n

))

= r1/n(cosψ + i sinψ) = r1/n(sech ln f + i tanh ln f)

zn = rn(cosnθ + i sinnθ) = r(cos$ + i sin$)

= rn(cos($ + k2π) + i sin($ + k2π)) = rn(tanh ln f + i sech ln f)n

zk = r1/n(cos(
$

n
+
k2π
n

) + i sin(
$

n
+
k2π
n

))

= r1/n(cos θ + i sin θ) = r1/n(tanh ln f + i sech ln f)

k = 0, 1, . . . , n− 1, upon ψ = cos−1 sech ln f or θ = sin−1 sech ln f = π
2 − ψ.

Also we know zn = [r(x+iy)]n = [r(cot θ+i csc θ)]n = [r(sinh ln f+i cosh ln f)]n =
rn(−1 + i sinhn ln f). So we have an alternate kind of double-angle formula

zn = rn(secψ + i tanψ)n = r(sec κ + i tan κ)

= rn(sec(κ + k2π) + i tan(κ + k2π)) = rn(1 + i sinhn ln f)

zk = r1/n(sec(
κ
n

+
k2π
n

) + i tan(
κ
n

+
k2π
n

))

= r1/n(secψ + i tanψ) = r1/n(1 + i sinhn ln f)

zn = rn(cot θ + i csc θ)n = r(cot$ + i csc$)

= rn(cot($ + k2π) + i csc($ + k2π)) = rn(−1 + i sinhn ln f)

zk = r1/n(cot(
$

n
+
k2π
n

) + i csc(
$

n
+
k2π
n

))

= r1/n(cot θ + i csc θ) = r1/n(−1 + i sinhn ln f).

The exponential and logarithmic functions are

ez = erxeiry

= er cot θeir csc θ = er cot θ(cos r csc θ + i sin r csc θ)

= er sinh ln feir cosh ln f = er sinh ln f (cos r cosh ln f + i sin r cosh ln f)

= |ez| e
z

|ez|
,

ln z = ln |z|+ iarg(z),

z = eln z = eln |z|eiarg(z) = |z| z
|z|

= r(x+ iy) = r(cot θ + i csc θ)

= ln ez = ln |ez|+ iarg(ez) = ln erx + iry.
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3. Half-angle formulas, the metric and time

Half-angle formulas can pertain to the metric [6, pp. 312–313] [10] [11]

tan
ψ

2
= cot

(
π

2
− ψ

2

)
= tanh

ln f
2

tan
θ

2
= tan

(
π

4
− ψ

2

)
= cot

(
π

4
+
ψ

2

)
=

1
f

cot
ψ

2
= − tan

(
π

2
+
ψ

2

)
= coth

ln f
2

cot
θ

2
= tan

(
π

4
+
ψ

2

)
= cot

(
π

4
− ψ

2

)
= f.

The significance of cot θ2 = f is that the stereographic projection of a line drawn
with an angle θ

2 from the west pole of a sphere, P, and an angle θ from the origin,
maps the point Q = f = cot θ2 onto the inversive plane x = 1 at 1

f = tan θ
2 [7, pp.

92–94] [21, p. 59]. This preserves measuring great circles and angles with a partial
metric. Time is understood as a period when f = x+

√
x2 + 1 [2, p. 124] [13]

T =
1
f

= tan
1
2
θ = tanh tanh−1 1

f
= tanh

1
2

ln
1 + 1/f
1− 1/f

= tanh
1
2

ln
f + 1
f − 1

= tanh
1
2
α

= tanh
1
2

ln
esinh−1 x + 1
esinh−1 x − 1

.

4. A unique geometric relationship

The geometric relationship is unique in this scheme. With T = 1
f we know that

for the vertical unit hyperbola, y2 − x2 = 1, at the point

(6) eα/2 = e
1
2 ln f+1

f−1 =
(
f + 1
f − 1

)1/2

,

the hypotenuse line from the unit circle to that point is

(7)

((
sinh

1
2

ln
f + 1
f − 1

)2

+
(

cosh
1
2

ln
f + 1
f − 1

)2
)1/2

=
(
f2 + 1
f2 − 1

)1/2

.

We use the ratio of both hypotenuses to multiply the circular coordinates

sin
1
2
θ =

(
1

f2 + 1

)1/2

= tanh sinh−1 1
f

=
1/f

esinh−1 1/f − 1/f
=
eiθ/2 − cos(θ/2)

i

(8)

cos
1
2
θ =

(
f2

f2 + 1

)1/2

=
1

cosh sinh−1 1/f
=

1
esinh−1 1/f − 1/f

= eiθ/2 − i sin(θ/2)

by (7) to derive the hyperbolic coordinates

sinh
1
2
α =

(
1

f2 − 1

)1/2

= tan sin−1 1
f

=
1/f

ei sin
−1 1/f − i1/f

= eα/2 − cosh
α

2

(9)

cosh
1
2
α =

(
f2

f2 − 1

)1/2

=
1

cos sin−1 1/f
=

1
ei sin

−1 1/f − i1/f
= eα/2 − sinh

α

2

where θ = sin−1 sech ln f, an α = ln f+1
f−1 , and sinh−1 1

f = ln( 1
f +

√
1
f2 + 1).
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5. A previous complex trigonometry

A typical depiction is by Harkin and Harkin, who in the April, 2004 Mathemat-
ics Magazine, describe a “Geometry of Generalized Complex Numbers.” They
draw trigonometric functions this way [12, pp. 121–122]:

“From the point N on the unit circle in Cp drop the perpendicular
NP to the radius OM (Figure [2]). At the point M draw a line
tangent to the unit circle. Let Q be the point of intersection of the
tangent and the line through ON. The lengths of the segments OP,
NP, and QM are defined to be the p-cosine (cosp), p-sine (sinp),
and p-tangent (tanp), respectively.”

Harkin and Harkin use these geometric definitions to equate cos θ and coshα
with cosp, and to equate sin θ and sinhα with sinp. 1

OOO

N Q

P M

θpθpθp

p = 0 p > 0p < 0

P M

N Q

M P

Q

N

Figure 2. Geometric definitions of cosp, sinp, and tanp

The proportion QM/OM = NP/OP is a common mistake: tan 2 θ2 = 2 tan θ/2
1−tan2 θ/2 =

2 tanhα/2
1−tanh2 α/2

= 2 sinh α
2 cosh α

2 = sinh 2α2 , where θ = sin−1 sech ln f and α = ln f+1
f−1 ,

not tan θ = tanhα [23, p. 67]. Were they to draw the circle together with the verti-
cal hyperbola, as we have done in Figure 1 (bottom), they would have been able to
equate circular functions with hyperbolic functions as in equation (3). Specifically,
QM = tan θ of the unit circle is the same length as sinhα of the hyperbola, NP
= sin θ is the same length as tanhα, and OP = cos θ is the same length as sechα.
For the hyperbola we have OP = coshα = sec θ, and NP = QM = sinhα = tan θ.
Their drawing hides that the angle ψ = ∠MOQ 6= ∠PON in Figure 1 (top). Half-
angle formulas (8) and (9) do maintain the hypotenuse ON as in equation (7),
because tan 1

2θ = tanh 1
2α. Another father-and-son team, the Bolyais (1802–60) [4]

[10, p. 218] [2, Chapter 3], are famous for finding the geometry of equation (11) in
Appendix: the theory of space.

1Copyright the Mathematical Association of America 2004. All rights reserved.
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6. A transformation of accelerations for time

This paper’s transformation of accelerations is similar yet different from the
transformation of velocities of Galileo Galilei (1564–1642)

(10) u = u′ + v.

The quantities are the “absolute velocity” u, i.e., a moving particle’s velocity with
respect to a fixed reference frame, its “relative velocity” u′, i.e., the particle’s ve-
locity with respect to a moving reference frame, and the “transport velocity” v,
i.e., the velocity of the moving reference frame. The transformation of velocities of
Albert Einstein (1879–1955) and H. A. Lorentz (1853–1928) replaced (10) with

u =
u′ + v

1 + u′v/c2
.

Einstein believes when v = c, c being the speed of light, that u = c rather than
u = c+ v when the photon u′ = c [14, pp. 161, 173, 203–212] [17] [9] [15].

Wave velocity is cyclic, rather than the linear, inertial Newton’s first law of
motion. This paper’s transformation of accelerations is based on harmonic motion.
For the derivatives of the time period T = tan 1

2θ = tanh 1
2α = 1

f second/cycle

dT

dθ
=
dT

df

df

dθ
=

d

dθ
tan

1
2
θ =

d

dθ
tanu = (sec2 u)

du

dθ
=

1
2

sec2 1
2
θ, θ = sin−1 sech ln f

dT

dα
=
dT

df

df

dα
=

d

dα
tanh

1
2
α =

d

dα
tanhu = (sech2 u)

du

dα
=

1
2

sech2 1
2
α, α = ln

f + 1
f − 1

dT

df
=
dT

dα

dα

df
=

d

df
f−1 = − 1

f2

dα

df
=
dα

dT

dT

df
=

d

df
ln
f + 1
f − 1

=
1
u

du

df
= (

f − 1
f + 1

)(
d

df

f + 1
f − 1

) = (
f − 1
f + 1

)(
−2

(f − 1)2
) = − 2

f2 − 1
dθ

df
=
dθ

dT

dT

df
=

d

df
sin−1 sech ln f =

d

df
sin−1 u =

u′√
1− u2

=
−((sech ln f)(tanh ln f)) ddf ln f√

1− (sech ln f)2
=
−((sech ln f)(tanh ln f))1/f√

1− (sech ln f)2

make this paper’s transformation of accelerations (refer to Tables 2 and 3),

dT

dθ
=
dT

dα
− dT

df
=
dT

dα
+

1
f2

u = u′ + v

accelerationabsolute = accelerationrelative + accelerationtransport.

If the wave velocity in meters, c, is a constant, then dc = 0. But since the
wave velocity in radians, θ, is a variable, then we might have dθ 6= 0. This is
why we hereby replace c with θ = sin−1 sech ln f. The transport acceleration v
with 1/f2 second/cycle2, is also known as the accelerationframe of the Einsteinian
gravitational frame force Fframe = −mass× accelerationframe, in an accelerating,
noninertial, rotating and cyclic frame of reference

Fθ = Fα − Fframe

m
dT

dθ
= m

dT

dα
+m

1
rf2

.
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In an inertial frame of reference there is no frame force.
Wave velocity is like a photon never-ending sine wave with a harmonic motion

period, within an unique geometric relationship limited at eα/2 (6). When a wave
accelerates at u′ = dT/dα = 1/2 second/cycle2 relative to a vehicle (reference
frame) transporting the wave at no (v = 0) acceleration, the wave goes an ac-
celeration relative to a fixed observer at u = dT/dθ = 1/2 second/cycle2, within
a period T = 0 second/cycle. As the transporting vehicle accelerates from 0 to
the limit v = 1/f2 = 1 second/cycle2, the u′ acceleration of the wave relative to
the vehicle approaches 0, and the fixed observer sees the wave’s acceleration at
u = 1 second/cycle2, within a period T = 1 second/cycle. The transformation of
accelerations expresses harmonic motion in special relativity [21].

7. From the metric to the angle of parallelism

Both Lobacevskii and Bolyai discovered the angle of parallelism. Rather than
discuss the Poincaré disk, this paper describes hyperbolic geometry with hyperbo-
las. The measurement of great circles and angles with a partial metric preserves
the distance scale s and the physical angle of parallelism, Π(as ) = 2 tan−1 e−a/s

[2, Chapter 3] [7, pp. 267–268] [8]. We use equation (2) to solve the arc length of
a unit circle from (0, 1) to (cosψ, sinψ), that is (sech a, tanh a), when a = ln f =
ln(y +

√
y2 + 1) = sinh−1 y so that∫ sech a

0

(
1 +

(
dy

dx

)2
)1/2

dx =
∫ a

0

((
dx

dt

)2

+
(
dy

dt

)2
)1/2

dt(11)

=
∫ a

0

((− sech t tanh t)2 + (sech2 t)2)1/2dt =
∫ a

0

2
et + e−t

dt

=
∫ ea

1

2
u+ 1

u

du

u
= 2 tan−1 ea − π

2
= ψ.

Solving the s arclength of a horizontal unit hyperbola x2 − y2 = 1 from (1, 0) to
(cosh a, sinh a) becomes the distance scale [19, pp. 318–319, 422–423]

s =
∫ cosh a

1

(
1 +

(
dy

dx

)2
)1/2

dx =
∫ a

0

((
dx

dt

)2

+
(
dy

dt

)2
)1/2

dt

=
∫ a

0

((sinh t)2 + (cosh t)2)1/2dt.

For the vertical hyperbola, with a = ln f = sinh−1 x, f = x+
√
x2 + 1 = esinh−1 x,

and x increasing from 0 to∞, we have the angle of parallelism Π(a) = 2 tan−1 e−a =
2 tan−1 e− sinh−1 x = θ = π

2 − ψ = sin−1 sech ln f equation (3) approaching from π
2

to 0 radians. Refer to Table 3. With its distance scale s and a = sinh−1 x, the
physical angle of parallelism Π(as ) = 2 tan−1 e−a/s approaches π

2 radians, implying
parallelism [19, pp. 300, 414, 434] [10, p. 217] [7, pp. 315, 377]. The length of
a/s = 1 has 2 tan−1 e−1 = 0.70502.... Refer to Table 2. When a = sinh−1 1 in the
distance scale s, the standard length has a = s× sinh−1 1 for 2 tan−1 e−a/s = π

4 =
0.78539.... The base a = ln f = sinh−1 x of the astronomical asymptotic triangle
CBA is an important new kind of curve which is orthogonal to all parallels BA.
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8. The theory of space

As George Martin (1932–?) says [19, pp. 301–302],
“The largest physical triangles that can be accurately measured
are astronomical. Let E stand for the Earth, S for the Sun, and
V for the brilliant blue star Vega. ]SEV can be measured from
the Earth when ]ESV is right. Using this measurement and the
fact that [the defect of the triangle] SEV is less than π

2 - ]SEV,
one obtains [the defect of the triangle] SEV < 0.0000004. ”

Were the physical angle of parallelism for Vega determined by e7.8 with 7.8
parsecs (pc), the angle would agree more closely with Martin’s evidence by Π(as ) =
π
2 − 0.0000000291 = 1.570796298 at a = ln f = 20.73 geometrical units. Poincaré
uses “the defect of the triangle” in defining the angle of parallelism, while Martin’s
innovation is the distance scale s.

Compare this to one parsec (pc) to define the distance of the Earth to the
Sun (1 astronomical unit, or AU) that subtends an angle of 1 second of arc,
equivalent to 206265 astronomical units [5, pp. 38, 380, 526, A-5][22, p. 347].
The Parallactic angle, or parallax, conventionally defined to be half the star’s
apparent shift relative to the background stars as we move from one side of the
Earth’s orbit to the other, measures ]SAE, the distance to (any) star in parsecs.
The parallax (in arc seconds) decreases as distance (in parsecs) increases. If the
geometric electromagnetic spectrum, Table 1 (below), holds, 206265 AU is like
a frequency f = x +

√
x2 + 1 cycles/second with an x = epc × 206264.8062 =

epc × 648000/π, a wavelength r = θ/f radian/cycle, and a wave velocity θ =
sin−1 sech ln f radian/second.

The base a = 1 unit of the Sun to the Earth has 206264.8 units from the Sun
to the idealized star A with ]SAE = 1 arc second. For the Sun to the star Vega,
the ]SV E = 1/7.8 arc seconds has a distance SV = 7.8 × 206264.8 units of 7.8
parsecs.

With hyperbolic geometry we know the physical angle of parallelism Π(as ) for
understanding the asymptotic triangle. An asymptotic triangle with a physical
angle of parallelism ]CBA = Π(as ) has a base a = ln f = CB geometrical units
from point C to point B, a ]CAB = 0, and a distance BA = ∞. For Vega the
]SEV = Π(as ) = π

2 − (2.91×10−8) radians has a base SE = a = 20.73 geometrical
units, a ]SV E = 0, and an EV = ∞. The author hypothesizes Π(as ) connects to
7.8 parsecs by an exponential of 7.8. Refer to Table 2.

To traverse from the Sun to the center of our galaxy takes 8000 parsecs. The
galaxy is roughly 30000 parsecs wide. It may be impractical to use the angle of par-
allelism, with its exponentiation, to describe great distances. But when we realize
x = epc × 648000/π, therefore f = x +

√
x2 + 1, we can construct an electromag-

netic spectrum which geometrically measures the near universe [23, pp. 23–37, 208,
305–311].

An asymptotic triangle with a base a = CB = ln f = ln(x +
√
x2 + 1) is listed

in Table 3. The unique geometric relationship describes how eα/2 limits values on
the hyperbola. The asymptotic triangle illustrates space. The transformation of
accelerations illustrates time.



12 RUSSELL CLARK ESKEW

9. A geometric electromagnetic spectrum

The following Tables 1 and 2 have eleven categories, formulated

wavevelocymeters = c = 299792458
meters
second

= λ
meters
cycle

×f cycles
second

wavevelocyradian = θ
radian
second

= r
radian
cycle

×f cycles
second

= sin−1 sech lnf

x = eparsecs × 648000/π

frequency = f
cycles
second

= x+
√
x2 + 1

wavelengthradian = r
radian
cycle

= θ
radian
second

× 1
f

second
cycle

wavelengthmeters = λ
meters
cycle

= 299792458
meters
second

× 1
f

second
cycle

Π(
a

s
) = 2 tan−1 e−a/s, a = ln f, s =

∫ a

0

((sinh t)2 + (cosh t)2)1/2dt

period = T =
1
f

second
cycle

= tan
1
2
θ = tanh

1
2
α

absoluteaccel = u =
dT

dθ
=

1
2

sec2 1
2
θ

second
cycle2

, θ = sin−1 sech ln f

relativeaccel = u′ =
dT

dα
=

1
2

sech2 1
2
α

second
cycle2

, α = ln
f + 1
f − 1

transportaccel = v = 1/f2 second
cycle2

.

Louis de Broglie’s (1892–1987) wavelength λ = h/p has h, Planck’s constant,
and p = E/c, a photon’s momentum p with energy E at the velocity of light c.
Einstein relates frequency f cycles/second = 1/λ cycle/meter × c meters/second
to photon energy E = cp by E = hf = hc/λ. Thus we have λ = c/f meters/cycle
= c/(E/h) = hc/E = hc/cp = h/p. Using f = θ/r with our wave velocity θ =
radian/second measure of c, we have E = θp = hf = hθ/r. This solves to r = θ/f
radian/cycle = θ/(E/h) = hθ/E = hθ/θp = h/p.

10. Conclusion

By Ockham’s Razor, the simpler theorem is preferred. Our hyperbolic trigono-
metric functions define circular trigonometric functions, providing a hyperbolic al-
ternative to Euler’s formula (4). Double-angle formulas appear in complex products
and roots. Frequency defines the metric period. Rather than with the Newtonian
linear velocity, force accelerations are understood with derivatives of a harmonic
motion cyclic periodic wave velocity. The angle of parallelism is made with an
important curve a. The physical angle of parallelism with a and distance scale s is
hypothesized to be determined by the parallactic exponential of parsecs. We may
use this geometry to describe the electromagnetic spectrum. The Appendix adds
the Lorentz transformation and an algebra of distance and time. In these pages we
have sought to measure astronomical quantities with hyperbolic geometry geodesics
in special relativity and quantum mechanics.
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Table 1. Geometric electromagnetic spectrum in meters and radians.

x frequency f wavelength r wavelengt λ wave velocity θ
cycles/second radian/cycle meter/cycle radian/second Name

0 1.0 π/2 = 1.5707 299792458 π/2 = 1.57079
1.0 1 +

√
2 = 2.41 0.325322571 124178102 π/4 = 0.78539

e0 × 648000/π 412529.6125 1.17× 10−11 726.7174256 0.000004848 heat
e1 × 648000/π 1121371.749 1.59× 10−12 267.3444005 0.000001784 AM
e3 × 648000/π 8285878.764 2.91× 10−14 36.18113015 0.000000241
e5 × 648000/π 61224823.01 5.33× 10−16 4.896583498 0.000000033
e7 × 648000/π 452393651.9 9.77× 10−18 0.662680515 0.000000004 FM
e9 × 648000/π 3342762073 1.78× 10−19 0.089684055 5.98× 10−10

e11 × 648000/π 2.46× 1010 3.27× 10−21 0.012137417 8.09× 10−11 radar
e13 × 648000/π 1.82× 1011 6.00× 10−23 0.001642621 1.09× 10−11

e15 × 648000/π 1.34× 1012 1.09× 10−24 0.000222305 1.48× 10−12 Mic W
e17 × 648000/π 9.96× 1012 2.01× 10−26 0.000030086 2.00× 10−13

e19 × 648000/π 7.36× 1013 3.68× 10−28 0.000004072 2.71× 10−14 Infred
e21 × 648000/π 5.44× 1014 6.75× 10−30 0.000000551 3.67× 10−15 Visible
e23 × 648000/π 4.02× 1015 1.23× 10−31 0.000000075 4.97× 10−16 UV
e25 × 648000/π 2.97× 1016 2.26× 10−33 0.000000001 6.73× 10−17

e27 × 648000/π 2.19× 1017 4.15× 10−35 0.000000001 9.11× 10−18 X-ray
e29 × 648000/π 1.62× 1018 7.60× 10−37 1.84× 10−10 1.23× 10−18 atom
e31 × 648000/π 1.19× 1019 1.39× 10−38 2.50× 10−11 1.66× 10−19

e33 × 648000/π 8.85× 1019 2.55× 10−40 3.38× 10−12 2.25× 10−20 γ - ray
e35 × 648000/π 6.54× 1020 4.67× 10−42 4.58× 10−13 3.05× 10−21

e37 × 648000/π 4.83× 1021 8.55× 10−44 6.20× 10−14 4.13× 10−22

e39 × 648000/π 1.78× 1022 2.31× 10−44 8.39× 10−15 3.57× 10−22 photon
e41 × 648000/π 2.63× 1023 2.87× 10−47 1.13× 10−15 7.57× 10−24

e43 × 648000/π 1.95× 1024 5.25× 10−49 1.53× 10−16 1.02× 10−24 nucleus
e45 × 648000/π 1.44× 1025 9.62× 10−51 2.08× 10−17 1.38× 10−25

e47 × 648000/π 1.06× 1026 1.76× 10−52 2.81× 10−18 1.87× 10−26 strings
e49 × 648000/π 7.86× 1026 3.23× 10−54 3.81× 10−19 2.54× 10−27

e51 × 648000/π 5.81× 1027 5.91× 10−56 5.15× 10−20 3.43× 10−28

e53 × 648000/π 4.29× 1028 1.08× 10−57 6.97× 10−21 4.65× 10−29

e55 × 648000/π 3.17× 1029 1.98× 10−59 9.44× 10−22 6.30× 10−30

e57 × 648000/π 2.34× 1030 3.63× 10−61 1.27× 10−22 8.52× 10−31

e86.7 × 206265 1.87× 1043 5.69× 10−87 1.61× 10−35 1.06× 10−43 Planck
∞ ∞ 0 0 0
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Table 2. Physical angle of parallelism and addition of accelerations as periods.

phy angle of parallsm time T = 1/f absolute acceleration relative acceleration transport accl
Π(as ) = 2 tan−1 e−a/s second/cycle u = dT/dθ u′ = dT/dα v = 1/f2

0.705026844 1.0 1.0 0 1.0
0.843488088

√
2− 1 = 0.41 0.5 + 0.085786 0.5− 0.085786 0.171572875

1.570752000 0.000002424 0.5 + (2.93× 10−12) 0.5− (2.93× 10−12) 5.87× 10−12

1.570778759 0.000000892 0.5 + (3.97× 10−13) 0.5− (3.97× 10−13) 7.95× 10−13

1.570793608 0.000000121 0.5 + (7.32× 10−15) 0.5− (7.32× 10−15) 1.45× 10−14

1.570795913 0.000000016 0.5 + (2.22× 10−16) 0.5− (2.22× 10−16) 2.66× 10−16

π/2− (6.23× 10−8) 0.000000002 0.5 + d 0.5− d 4.88× 10−18

π/2− (9.27× 10−9) 2.99× 10−10 0.5 + d 0.5− d 8.94× 10−20

π/2− (1.37× 10−9) 4.04× 10−11 0.5 + d 0.5− d 1.63× 10−21

π/2− (2.00× 10−10) 5.47× 10−12 0.5 + d 0.5− d 3.00× 10−23

π/2− (2.92× 10−11) 7.41× 10−13 0.5 + d 0.5− d 5.49× 10−25

π/2− (4.24× 10−12) 1.00× 10−13 0.5 + d 0.5− d 1.00× 10−26

π/2− (6.13× 10−13) 1.35× 10−14 0.5 + d 0.5− d 1.84× 10−28

π/2− (8.81× 10−14) 1.83× 10−15 0.5 + d 0.5− d 3.37× 10−30

π/2− (1.26× 10−14) 2.48× 10−16 0.5 + d 0.5− d 6.18× 10−32

π/2− (1.80× 10−15) 3.36× 10−17 0.5 + d 0.5− d 1.13× 10−33

π/2− (2.57× 10−16) 4.55× 10−18 0.5 + d 0.5− d 2.07× 10−35

π/2− (3.65× 10−17) 6.16× 10−19 0.5 + d 0.5− d 3.80× 10−37

π/2− (5.18× 10−18) 8.34× 10−20 0.5 + d 0.5− d 6.96× 10−39

π/2− (7.33× 10−19) 1.12× 10−20 0.5 + d 0.5− d 1.27× 10−40

π/2− (1.03× 10−19) 1.52× 10−21 0.5 + d 0.5− d 2.33× 10−42

π/2− (1.46× 10−20) 2.06× 10−22 0.5 + d 0.5− d 4.27× 10−44

π/2− (2.05× 10−21) 2.79× 10−23 0.5 + d 0.5− d 7.83× 10−46

π/2− (2.88× 10−22) 3.78× 10−24 0.5 + d 0.5− d 2.62× 10−47

π/2− (4.05× 10−23) 5.12× 10−25 0.5 + d 0.5− d 6.96× 10−49

π/2− (5.68× 10−24) 6.93× 10−26 0.5 + d 0.5− d 4.81× 10−51

π/2− (7.95× 10−25) 9.39× 10−27 0.5 + d 0.5− d 8.81× 10−53

π/2− (1.11× 10−25) 1.27× 10−27 0.5 + d 0.5− d 1.61× 10−54

π/2− (1.55× 10−26) 1.71× 10−28 0.5 + d 0.5− d 2.95× 10−56

π/2− (2.17× 10−27) 2.32× 10−29 0.5 + d 0.5− d 5.41× 10−58

π/2− (3.02× 10−28) 3.15× 10−30 0.5 + d 0.5− d 9.92× 10−60

π/2− (4.21× 10−29) 4.26× 10−31 0.5 + d 0.5− d 1.81× 10−61

− 5.38× 10−44 0.5 + d 0.5− d 2.90× 10−87

π/2 = 1.570796327 0 0.5 0.5 0

Table 3. Π(a) = 2 tan−1 e−a = θ values

x CB = a = ln f u = dT/dθ u′ = dT/dα v = 1/f2 Π(a)
0 ln(0 +

√
02 + 1) 1.0 0.0 1.0 π/2 = 1.5707

1 ln(1 +
√

12 + 1) 0.5 + .085786438 0.5− .085786438 0.17157287 π/4 = 0.7853
2 ln(2 +

√
22 + 1) 0.5 + .027864045 0.5− .027864045 0.05572809 0.463647609

3 ln(3 +
√

32 + 1) 0.5 + .013167019 0.5− .013167019 0.02633403 0.321750554
n ln(n+

√
n2 + 1) 0.5 0.5 0 0
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Appendix . Changing the Lorentz transformation

With the concept of proper time, a moving wave with instantaneous velocity (i.e.,
with “transport acceleration” of a moving reference frame) v(t) = 1

f2 (t) relative
to some inertial system K (i.e., with “absolute acceleration” dT/dθ with respect
to a fixed reference frame) changes its position in a time interval dt by dx =
vdt = 1

f2 dt. The space and time coordinates in K ′, (t′, z′, x′, y′) = (x
′

0, x
′

1, x
′

2, x
′

3) =
(ct′, z′, x′, y′), where the system is instantaneously at rest (i.e., with the wave’s
“relative acceleration” dT/dα with respect to the moving reference frame), are
related to those in K, (t, z, x, y) = (x0, x1, x2, x3) = (ct, z, x, y), by the inverse
Lorentz transformation

x0 = γ(x
′

0 + x
′

1β) = (cosh a)(x
′

0 + x
′

1 tanh a)

x1 = γ(x
′

1 + x
′

0β) = (cosh a)(x
′

1 + x
′

0 tanh a)

x2 = x
′

2

x3 = x
′

3.

With the boost parameter ξ it said that

β = tanh ξ
γ = cosh ξ
γβ = sinh ξ

applies to

x
′

0 = x0 cosh ξ − x1 sinh ξ(12)

x
′

1 = −x0 sinh ξ + x1 cosh ξ.

It is Einstein’s thought that c = 1 with the velocity v in tanh ξ = v
c . However,

the wave velocity θ, period T = 1
f , and transport acceleration v = 1/f2 relate

differing wave velocities with a differing fractions of a second t. Rather than using
the boost parameter ξ in (12), the hyperbolic coordinates are equated with the
circular coordinates by T = 1/f = tan 1

2θ = tanh 1
2α. The Lorentz time t equalling

the distance over θ of the x
′

0 observer becomes

x
′

0 = x0 cosh
1
2

ln
f + 1
f − 1

− x1 sinh
1
2

ln
f + 1
f − 1

=
(

cosh
1
2

ln
f + 1
f − 1

)(
x0 − x1 tanh

1
2

ln
f + 1
f − 1

)
=
(

f2

f2 − 1

)1/2(
x0 − x1

1
f

)
x
′

1 = −x0 sinh
1
2

ln
f + 1
f − 1

+ x1 cosh
1
2

ln
f + 1
f − 1

=
(

cosh
1
2

ln
f + 1
f − 1

)(
x1 − x0 tanh

1
2

ln
f + 1
f − 1

)
=
(

f2

f2 − 1

)1/2(
x1 − x0

1
f

)
.
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The moving wave has advanced a distance vdt = 1
f2 dt = dx

′

0. Time is measured
with twice the distance L of the hypotenuse, vs. twice the height D of the side
of the triangle. The proper time observer sees x0 = 2D/( 1

f ). The x
′

0 observer,
however, sees x

′

0 = 2L/( 1
f ), where L = ((( 1

f2x
′

0)/2)2 + D2)1/2 and D = ( 1
f x0)/2,

by which

x
′

0 =
(

f2

f2 − 1

)1/2

x0

is derivable when x1 = 0 occurs simultaneously. Moving clocks run slow. Events
will be separated by the time interval

x
′

0 =
(

f2

f2 − 1

)1/2

(−x1
1
f

)

since x0 = 0, although the events are simultaneous in time [21, p. 32].
The element of arc length ds of the wave’s path has ds2 = c2dt2 − |dx|2 when

dx1 = r sinψds, dx2 = cosψds, dx3 = sinψds are “increments” of x1, x2, x3 having
the angle ψ. The direction of the path curve’s polar-equation-tangent determined
by the angle φ which this tangent makes with the radius r or by the angle ψ = θ+φ
which it makes with the x-axis thereby constructs dr = cosφds, rdϕ = sinφds, and
r sinϕdθ [7, pp. 120–121]. A motionless wave has ds2 = dt2. The new distance s is
called proper time τ, and the Lorentz metric is dτ2 = c2dt2− r2 sin2 ϕdθ2− dr2−
r2dϕ2.

The square of the corresponding infinitesimal invariant interval ds is

ds2 = c2dt2 − |dx|2

= c2dt2(1− β2)

=
1
f2
dt2
(
f2 − 1
f2

)
where β = v

c = tanh a or where c is replaced by 1
f = tanh 1

2 ln f+1
f−1 and v by 1

f2 . In
the coordinate system K ′ where the system is instantaneously at rest, the space-
time increments are dt′ = dτ, dx′ = 0. Thus the invariant interval is ds = cdτ or
ds = 1

f dτ . The increment of time dτ in the instantaneous rest frame of the system
is an invariant quantity that takes the form

dτ = dt(1− β2(t))1/2 =
dt

γ(t)

dτ = dt

(
f2

f2 − 1
(t)
)−1/2

where γ = cosh a = (1 − β2)−1/2 and cosh 1
2 ln f+1

f−1 = ( f2

f2−1 )1/2. That is the time
as seen in the rest frame of the system [15, pp. 524–528].
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Appendix . The algebra of distance and time

The following algebraic equations illustrate the theory of distance and time:

A =
F

D
=
E

F
=

G

CF
=

648000
π

= 206264.8062... 6= 206265

is the number of astronomical units in 1 parsec = 1
1arcsec , the number of seconds

in 1 radian, and the number x of x+
√
x2 + 1 cycles in 1 second.

B = CF = DH =
G

A
= 149597870660

is the number of meters in 1 AU.

C = 299792458

is the number of meters in 1 second.

D =
E

A2
=
F

A
=

G

A2C
=

B

AC
=

10685562190π
13876108056000

= 0.00241924346078189...

is the number of radians in 1 AU.

E = A2D = AF =
G

C
=

6924244299120000
21413747π

= 1.02927125026818...× 108

is the number of seconds in A = 206264.8 astronomical units, equivalent to (Esec)

( 1
31471200

lyear
sec ) = 3.27 light-years, and the number of x+

√
x2 + 1 cycles in 1 AU.

F = AD =
E

A
=
G

H
=

10685562190
21413747

= 499.004783702731

is the number of radians in A = 206264.8 astronomical units, and the number of
seconds in 1 AU.

G = AB = CE = FH =
96939420187680000

π
= 3.08567758066630805...× 1016

is the number of meters in A = 206264.8 astronomical units.

H = AC =
B

D
=

194265512784000
π

= 6.18366332637108...× 1013

is the number of meters in 1 radian.
Assuming A, B and C derives D, E, F, G and H. The radian/GU length of a

geometrical unit, GU, when x = A, is the number

D
radian

AU
× x

ln(x+
√
x2 + 1)

AU

GU
= 38.5925945....



TIME AND COMPLEX HYPERBOLIC TRIGONOMETRY 19

Other units are

1sec =
1
F
astunit

=
1
A
radian

1radian =
1
D
astunits 2πradians =

2π
D
astunits

= Asec = 1296000sec = 15days
= Hmeters = 388531025568000meters

= A2cycles

x+
√
x2 + 1cycles =

1
A
sec

=
1
A2

radian

=
C

A
meters

(A
cycles

sec
)(F

sec

astunit
) = E

cycles

astunit

A
cycles

sec
= (E

cycles

astunit
)(

1
F

astunit

sec
)

A
cycles

sec
= (

1
A

radian

sec
)(A2 cycles

radian
)

(E
cycles

astunit
)(

1
F

astunit

sec
) = (

1
A

radian

sec
)(A2 cycles

radian
)

(E
cycles

astunit
)(

1
A2

radian

cycle
)(

1
F

astunit

sec
) =

1
A

radian

sec

(D
radian

astunit
)(

1
F

astunit

sec
) =

1
A

radian

sec
.

The period T = 1/f second/cycle has f ≥ 1. Our algebra creates multiples of
1/A second/(x+

√
x2 + 1) cycle. The algebra has plural A seconds/radian, F sec-

onds/astronomical unit, and E seconds/Aastronomical units. A coordinate system
of 1296000 seconds = 15 days = 14 full days = 388531025568000 meters = 360
degrees × 3600 arcseconds in a circle is probable.
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