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Project
2 Workshops — 3/24/04 at APS Maentreal, 4/27/04 at ANL

Objective: Understand and control the materials
science of high-field forms of MgB,

® Understand physics of electron scattering in unigue
two-band framework

— Opportunities to attain new limits are not available with any other
superconductor

— Other properties make breakthrough possible
® Understand materials science:
— of homogeneously alloyed single phase MgB,

— of precipitates and nanostructures in unalloyed MgB,
— of precipitates in alloyed MgB,



Motivation

® High Field = better than copper-iron electromagnet

® All HFSC are intermetallics except for Nb-Ti alloy
— Why? T, and H_ are high enough in intermetallics.
— Excitement : Y,C;, B-diamond, PuCoGa., osmates, pyrochlores

® Few intermetallics can be made in useful forms
— Should be isotropic, too

® Alloying Is essential to improve H,

— But: intermetallics are much more susceptible to losing
superconductivity upon alloying than metals are

MgB, satisfies all of these prerequisites, hence is best
candidate for focused study

— Interesting physics, cheap raw materials, processing that scales
to long length, high-field properties that are interesting
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Mg substitution introduces intraband
scattering in 3D © band

B substitution: introduces intraband
scattering in 2D ¢ band

Interband scattering is weak but not
negligible

Quenched impurity or vacancy
structures also produce scattering

Electron diffusivities are anisotropic:
DG(C) << Dc(ab) Dn(C) ~ Dn(ab)

The ratio D_@ / D_(@b)
Is a variable material parameter.
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Dirty-Limit Theory o 2-gap SC

Result 2: The shape of H ,(T)

Two band with
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Proposal lfeam

® 2 workshops

— 3/24 at Montreal (APS)
— 4/27 at Argonne

® 13 Labs

Ames: M. Angst, S. Bud’ko, P.
Canfield*, D. Finnemore, V.
Kogan, D. Wilke

ANL: D. Hinks, M. lavarone, J.
Jorgensen, A. Koshelev, U. Welp*

ASU: N. Newmann, J. Rowell

BNL: L. Carr, L. Cooley*, R. Klie, Q.
Li, A. Moodenbaugh, C. Petrovic,
D. Welch

INEEL: H. Farrell
Kentucky: G. Cao, K.-W. Ng

LANL: L. Civale*, M. Jaime, X. Liao,
A. Serquis, Y. Zhu

ORNL: D. Christen, M.
Paranthaman*, J. Thompson

NREL: Y. Yan
OSU: E. Collings, M. Sumption

PSU: A. Pogrebnyakov, J. Redmond,
X. Xi

Princeton: R. Cava

Wisconsin: C.-B. Eom, A. Gurevich*,
T. Heitmann, E. Hellstrom, D.
Larbalestier, S. Patnaik, M.
Rzchowski, B. Senkowicz, X.
Song

* Steering committee

® Industry and End-Users:

— General Electric

— HyperTech Inc.

— Superconductor Technology Inc.
— Specialty Materials Corp

— MIT Plasma Science and Fusion
Center



Synthesis routes toward high-field MgB,

These routes work Overview of work planned
® Alloy with carbon ® Doped single crystals
— Best control so far — No US source right now!
— Bulk: high temperature — ANL, Ames
— CVD: gas mix ® Thin films
® Irradiate with neutrons — ASU, ORNL, Penn State,
® Force Mg-sublattice disorder Wisconsin, Industry
® Add oxygen interstitials ® Dense, well-connected bulk, wires
® Make nanostructured, use — g, BNL, AN, CIRIN L, )

Princeton, Kentucky, Wisconsin,

s Industry
_ ® Samples with controlled
® Alloying for Mg doesn’t work?! precipitates, pinning centers

Most important need.:
Reference base of benchmark samples !!




Thin fmms

Samples Substrate T, p,(40K) |H," |Ha' |g DD, |c(A) |a(Ad) (Mg |B |C |O
K) | (uQem) |(T) |(T) at% | at% | at% | at%
A epitaxial '° (0001)ALO; |35 |9(4) 135 |33 |0.045[0.12 |3.516 |3.047 |29 |53 |10 |8
B fiber-textured '° [ (0001)ALO; [23.7 |86(56) |17 |17 |05 |<<1 |- . 28 |57 |7 |8
C epitaxial*!® (0001)ALO; |34 |7 205 |30 006 |<<1 352 |3.08 |- |- |- |-
D fiber-textured*" | (111)SrTiO; |31  [220 33 |48 0075 |<<1 [3.547 |- 37 |32 |14 |17
E epitaxial SiC 415 [1.6(04) |12 [345]- . 3511 [3.107 |30 |57 [2 |11
F fiber-textured ° | SiC 35 |564 40 | >74 |0.045 | <<l |3.5423.055 |26 |46 |21 |6
G fiber-textured | SiC 35 1250 28.2 55.5]0.045 |0.065 [3.536 |3.057 |25 |42 |26 |6
H epitaxial ° SiC 38 105 105 |30 |0.025[0.06 |3.5193.107 |31 |63 |4 |1
I untextured * (0001)ALO; |32  |567(290) |21.7 [26.8[0.09 |0.08 |- . e
L no 001 textured '® | r-cut ALO; [39.4 [9.9(2.8) [10.8 [21.4]0.025|0.07 |- . 32 165 |1 |1
M epitaxial (111)MgO  |33.5 |47 14.6 |38.1]0.095 |0.1 3.533 [3.036 |24 |41 |28 |6
N untextured "’ (001)MgO  [28.6 |400 158 [243]0.155 |<<1 |- . 33 |53 |5 |9

H This is an example of how this CSP project can be effective! H
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 SNOW Improvement, too

MgB, + 10% SiC, Dou et al. (Woolongong)
Plus hot-pressing at LANL/UC
Measurements at NHMFL-LANL
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Nominal Mg(B; ¢5Cp 02)» filament
Diameter ~ 100 um

So far samples with nominal 0.05, 1,
2, 3.3 %% carbon were synthesized
Wilke et al, PRL to appear

A 3.7% C subst MgB,
® pure MgB,
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Characterizations ofi high-field MgB,,

Probes of 2-band properties,
high-field behavior
® Spectroscopy
— STM/STS — ANL, Wisconsin
— ARPES, EELS — ANL, BNL
® Raman, IR, soft x-ray
— ANL, BNL, ORNL
® Transport
— All

— But: resistivity is not as useful
as for 1-band SC

® Heat capacity
— ANL, LANL

® Magnetic — All labs
— NHMFL-LANL

Other characterizations

® Screen boron supply

— RBS, XRF, ICP — ASU, BNL,
Ames

® Atomic-resolution structure,
chemistry
— STEM/EELS — BNL

— HRTEM — Wisconsin, ANL,
BNL

® Surface passivation
— ASU, PSU, Wisconsin
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Expanded c-lattice parameter, Tl AL
buckling of Mg planes causes strong phagae
TC Scattering Eom et al. Nature 411, 558 (2001)
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Managing this CSP project

® Steering committee Year 1 example:
— Core BES labs + Wisconsin Priority — homogeneously doped
— Keep focus on project single phase benchmark samples
objectives ® Synthesis

— Help coordinate ideas,
expertise, facilities

— Make funding decisions;
determine funding pathways

— Doped crystals Ames, ANL

— Doped thin films ASU, ORNL, PSU,
Wisconsin, STI

— Doped bulk: Ames, BNL, Princeton,

— ldentify and rank priorities Ky, SMI
— Make outside contacts ® Characterization
— Organize workshops — STM/STS: ANL, Wisconsin
e Semi-annual meetings — H,,: LANL-NHMFL
-

(committee)
« Larger annual workshop

(all)

— Transport, magnetic: (Most labs)
— Calorimetry: ANL, LANL, UW

— Structure, spectroscopy: ANL, BNL,
ORNL, Wisconsin

® Models: uw, ANL, NREL, BNL



Cannot forget cost and complexity!
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Relevance to DOE Mission and US Economy

® HFSC primarily used in medical imaging, ~$2B / year

® Electricity Transmission and Distribution:
— Replacement of 3,500 km of underground lines at $1M / km
— Infrastructure improvement (8/14/2003 blackout)

® High-Energy and Nuclear Physics:
— Discovery tools, ~$0.5B annualized projects

® Fusion Energy:
— Burning plasma science on Secy. Abraham’s “little list”
— Near term: dictated by ITER decision, $1B of HFSC

— Far term: Burning plasma power plants work best at 20-30 K
operation, $1B of HFSC per power plant commissioned (~$4B
annual)

— Worldwide: 1000 GW by 2050 at $1/watt



Interactions with DOE Technologies

® [ndustry and End-Users are integrated into project
— Industry colleagues choose to participate at no cost to project
— This area will be expanded

® Workshop format will follow excellent examples

— DOE-HEP Low Temperature Superconductor Workshop
— DOE-OETD Conductor Workshops

® Organizers of these workshops are part of this team

® OETD and others will be appraised of progress

® Attempts will be made to leverage DOE Technologies
and Other Agency support
— Attitude: “Ignition”, not “glue” money



Summary.

® All of the ingredients for focused study are here

® Assembled team from 13 labs has established record of
excellence

® US competence will maintain pace with Japan and EU

® Opportunities for technology transfer and program
building are already being pursued

® New interactions are already forming because of
planning workshops



