|
Contact
Denis Ridzal
Senior Member of Technical Staff
dridzal@sandia.gov
(505) 845-1395
Related Links
Department
Center
CSRI
|
Publications
|
Refereed Articles
|
[1]
|
P. B. Bochev and D. Ridzal.
Additive Operator Decomposition and Optimization-Based Reconnection
with Applications.
In I. Lirkov, S. Margenov, and J. Wasniewski, editors,
Large-Scale Scientific Computing: Proceedings of LSSC 2009, volume 5910 of
Lecture Notes in Computer Science, pages 645-652. Springer Verlag,
2010.
[ bib |
DOI ]
|
|
[2]
|
P. B. Bochev and D. Ridzal.
An Optimization-Based Approach for the Design of PDE Solution
Algorithms.
SIAM J. Numer. Anal., 47(5):3938-3955, 2009.
[ bib |
DOI |
http ]
|
|
[3]
|
P. Bochev and D. Ridzal.
Finite Element Solution of Optimal Control Problems Arising in
Semiconductor Modeling.
In I. Lirkov, S. Margenov, and J. Wasniewski, editors,
Large-Scale Scientific Computing: Proceedings of LSSC 2007, volume 4818 of
Lecture Notes in Computer Science, pages 235-242. Springer Verlag,
2008.
[ bib |
DOI ]
|
|
[4]
|
P. B. Bochev and D. Ridzal.
Rehabilitation of the Lowest-Order Raviart-Thomas Element on
Quadrilateral Grids.
SIAM J. Numer. Anal., 47(1):487-507, 2008.
[ bib |
DOI |
http ]
|
|
[5]
|
M. Heinkenschloss and D. Ridzal.
Integration of Sequential Quadratic Programming and Domain
Decomposition Methods for Nonlinear Optimal Control Problems.
In U. Langer, M. Discacciati, D. Keyes, O. Widlund, and W. Zulehner,
editors, Domain Decomposition Methods in Science and Engineering
XVII, volume 60 of Lecture Notes in Computational Science and
Engineering, pages 69-80, Berlin, Heidelberg, New York, 2008. Springer
Verlag.
[ bib |
DOI ]
|
|
[6]
|
M. Heinkenschloss and D. Ridzal.
An Inexact Trust-Region SQP Method with Applications to
PDE-Constrained Optimization.
In Numerical Mathematics and Advanced Applications: Proceedings
of ENUMATH 2007, pages 613-620. Springer Verlag, 2008.
[ bib |
DOI |
http ]
|
|
[7]
|
R. A. Bartlett, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders.
Domain decomposition methods for advection dominated linear-quadratic
elliptic optimal control problems.
Comput. Methods Appl. Mech. Engrg., 195:6428-6447, 2006.
[ bib |
DOI ]
|
|
[8]
|
P. Bleher and D. Ridzal.
SU(1,1) Random Polynomials.
J. Statist. Phys., 106(1-2):147-171, 2002.
[ bib |
DOI ]
|
|
[9]
|
R. C. Y. Chin and D. Ridzal.
Generating orthogonal polynomials for exponential weights on a
finite interval.
In Special functions (Hong Kong, 1999), pages 42-56. World
Sci. Publishing, River Edge, NJ, 2000.
[ bib ]
|
Top of page
Reports, Etc.
|
[1]
|
P. Bochev, D. Ridzal, G. Scovazzi, and M. Shashkov.
Formulation, analysis and computation of an optimization-based
conservative, monotone, and bounds preserving remap of scalar fields.
Technical Report SAND2010-3021, Sandia National Laboratories,
Albuquerque, NM, 2010.
[ bib ]
|
|
[2]
|
M. Heinkenschloss and D. Ridzal.
A Matrix-Free Trust-Region SQP Method.
In preparation, 2010.
[ bib ]
|
|
[3]
|
M. Keegan, D. Ridzal, and P. Bochev.
Sparse-grid integration in finite element spaces.
In D. Ridzal and S. S. Collis, editors, CSRI Summer Proceedings
2008, pages 32-43. Computer Science Research Institute, Sandia National
Laboratories, 2008.
[ bib ]
|
|
[4]
|
D. Ridzal and S. S. Collis, editors.
CSRI Summer Proceedings 2008. Sandia National Laboratories,
2008.
[ bib |
.pdf ]
|
|
[5]
|
D. Ridzal.
Trust-Region SQP Methods with Inexact Linear System Solves for
Large-Scale Optimization.
PhD thesis, Department of Computational and Applied Mathematics, Rice
University, Houston, TX, April 2006.
[ bib ]
|
Top of page
|
|